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Abstract. Recently, large language models (LLMs) (e.g., GPT-4) have
demonstrated impressive general-purpose task-solving abilities, includ-
ing the potential to approach recommendation tasks. Along this line
of research, this work aims to investigate the capacity of LLMs that
act as the ranking model for recommender systems. We first formalize
the recommendation problem as a conditional ranking task, considering
sequential interaction histories as conditions and the items retrieved by
other candidate generation models as candidates. To solve the ranking
task by LLMs, we carefully design the prompting template and conduct
extensive experiments on two widely-used datasets. We show that LLMs
have promising zero-shot ranking abilities but (1) struggle to perceive
the order of historical interactions, and (2) can be biased by popular-
ity or item positions in the prompts. We demonstrate that these issues
can be alleviated using specially designed prompting and bootstrap-
ping strategies. Equipped with these insights, zero-shot LLMs can even
challenge conventional recommendation models when ranking candidates
are retrieved by multiple candidate generators. The code and processed
datasets are available at https://github.com/RUCAIBox/LLMRank.
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1 Introduction

In the literature of recommender systems, most existing models are trained with
user behavior data from a specific domain or scenario [26,28,49], suffering from
two major issues. Firstly, it is difficult to capture user preference by solely mod-
eling historical behaviors, e.g., clicked item sequences [28,33,81], limiting the
expressive power to model more complicated but explicit user interests (e.g.,
intentions expressed in natural language). Secondly, these models are essentially
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“narrow experts”, lacking more comprehensive knowledge in solving complicated
recommendation tasks that rely on background or commonsense knowledge [23].

To improve recommendation performance and interactivity, there have been
increasing efforts that explore the use of pre-trained language models (PLMs)
in recommender systems [21,30,62]. They aim to explicitly capture user pref-
erence in natural language [21] or transfer rich world knowledge from text cor-
pora [29,30]. Despite their effectiveness, thoroughly fine-tuning the recommen-
dation models on task-specific data is still a necessity, making it less capable of
solving diverse recommendation tasks [30]. More recently, large language mod-
els (LLMs) have shown great potential to serve as zero-shot task solvers [52,64].
Indeed, there are some preliminary attempts that employ LLMs for solving
recommendation tasks [13,20,40,59,60,73]. These studies mainly focus on dis-
cussing the possibility of building a capable recommender with LLMs. While
promising, the insufficient understanding of the new characteristics when mak-
ing recommendations using LLMs could hinder the development of this new
paradigm.

In this paper, we conduct empirical studies to investigate what determines the
capacity of LLMs that serve as recommendation models. Typically, recommender
systems are developed in a pipeline architecture [10], consisting of candidate
generation (retrieving relevant items) and ranking (ranking relevant items at a
higher position) procedures. This work mainly focuses on the ranking stage of
recommender systems, since LLMs are more expensive to run on a large-scale
candidate set. Further, the ranking performance is sensitive to the retrieved
candidate items, which is more suitable to examine the subtle differences in the
recommendation abilities of LLMs.

To carry out this study, we first formalize the recommendation process of
LLMs as a conditional ranking task. Given prompts that include sequential his-
torical interactions as “conditions”, LLMs are instructed to rank a set of “can-
didates” (e.g., items retrieved by candidate generation models), according to
LLM’s intrinsic knowledge. Then we conduct control experiments to systemat-
ically study the empirical performance of LLMs as rankers by designing spe-
cific configurations for “conditions” and “candidates”, respectively. Overall, we
attempt to answer the following key questions:

– What factors affect the zero-shot ranking performance of LLMs?
– What data or knowledge do LLMs rely on for recommendation?

Our empirical experiments are conducted on two public datasets for recom-
mender systems. The results lead to several key findings that potentially shed
light on how to develop LLMs as powerful ranking models for recommender
systems. We summarize the key findings as follows:

– LLMs struggle to perceive the order of the given sequential interaction histo-
ries. By employing specifically designed promptings, LLMs can be triggered
to perceive the order, leading to improved ranking performance.

– LLMs suffer from position bias and popularity bias while ranking, which can
be alleviated by bootstrapping or specially designed prompting strategies.
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Fig. 1. An overview of the proposed LLM-based zero-shot ranking method.

– LLMs outperform existing zero-shot recommendation methods, showing
promising zero-shot ranking abilities, especially on candidates retrieved by
multiple candidate generation models with different practical strategies.

2 General Framework for LLMs as Rankers

To investigate the recommendation abilities of LLMs, we first formalize the rec-
ommendation process as a conditional ranking task. Then, we describe a general
framework that adapts LLMs to solve the recommendation task.

2.1 Problem Formulation

Given the historical interactions H = {i1, i2, . . . , in} of one user (in chronological
order of interaction time) as conditions, the task is to rank the candidate items
C = {ij}mj=1, such that the items of interest would be ranked at a higher position.
In practice, the candidate items are usually retrieved by candidate generation
models from the whole item set I (m � |I|) [10]. Further, we assume that each
item i is associated with a descriptive text ti following [30].

2.2 Ranking with LLMs Using Natural Language Instructions

We use LLMs as ranking models to solve the above-mentioned task in an
instruction-following paradigm [64]. Specifically, for each user, we first construct
two natural language patterns that contain sequential interaction histories H
(conditions) and retrieved candidate items C (candidates), respectively. Then
these patterns are filled into a natural language template T as the final instruc-
tion. In this way, LLMs are expected to understand the instructions and output
the ranking results as the instruction suggests. The overall framework of the
ranking approach by LLMs is depicted in Fig. 1. Next, we describe the detailed
instruction design in our approach.

Sequential Historical Interactions. To investigate whether LLMs can cap-
ture user preferences from historical user behaviors, we include sequential his-
torical interactions H into the instructions as inputs of LLMs. To enable LLMs
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to be aware of the sequential nature of historical interactions, we propose three
ways to construct the instructions:

– Sequential prompting: Arrange the historical interactions in chronological
order. This way has also been used in prior studies [13]. For example, “I’ve
watched the following movies in the past in order: ‘0. Multiplicity’, ‘1. Jurassic
Park’, . . .”.

– Recency-focused prompting: In addition to the sequential interaction
records, we can add an additional sentence to emphasize the most recent
interaction. For example, “I’ve watched the following movies in the past in
order: ‘0. Multiplicity’, ‘1. Jurassic Park’, . . .. Note that my most recently
watched movie is Dead Presidents. . . .”.

– In-context learning (ICL): ICL is a prominent prompting approach for
LLMs to solve various tasks [78], where it includes demonstration examples
in the prompt. For the personalized recommendation task, simply introducing
examples of other users may introduce noises because users usually have differ-
ent preferences. Instead, we introduce demonstration examples by augmenting
the input interaction sequence itself. We pair the prefix of the input inter-
action sequence and the corresponding successor as examples. For instance,
“ If I’ve watched the following movies in the past in order: ‘0. Multiplicity’,
‘1. Jurassic Park’, . . ., then you should recommend Dead Presidents to me
and now that I’ve watched Dead Presidents, then . . .”.

Retrieved Candidate Items. Typically, candidate items to be ranked are
first retrieved by candidate generation models [10]. In this work, we consider a
relatively small pool for the candidates, and keep 20 candidate items (i.e., m =
20) for ranking. To rank these candidates with LLMs, we arrange the candidate
items C in a sequential manner. For example, “Now there are 20 candidate movies
that I can watch next: ‘0. Sister Act’, ‘1. Sunset Blvd’, . . .”. Note that, following
the classic candidate generation approach [10], there is no specific order for
candidate items. As a result, We generate different orders for the candidate items
in the prompts, which enables us to further examine whether the ranking results
of LLMs are affected by the arrangement order of candidates, i.e., position bias,
and how to alleviate position bias via bootstrapping.

Ranking with Large Language Models. Existing studies show that LLMs
can follow natural language instructions to solve diverse tasks in a zero-shot set-
ting [64,78]. To rank using LLMs, we infill the patterns above into the instruction
template T . An example instruction template can be given as: “ [pattern that
contains sequential historical interactions H] [pattern that contains retrieved
candidate items C] Please rank these movies by measuring the possibilities that
I would like to watch next most, according to my watching history.”.

Parsing the Output of LLMs. Note that the output of LLMs is still in natural
language text, and we parse the output with heuristic text-matching methods
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Table 1. Statistics of the preprocessed datasets. “Avg. |H|” denotes the average length
of historical interactions. “Avg. |ti|” denotes the average number of tokens in the item
text.

Dataset #Users #Items #Interactions Sparsity Avg. |H| Avg. |ti|
ML-1M 6,040 3,706 1,000,209 95.53% 46.19 16.96
Games 50,547 16,859 389,718 99.95% 7.02 43.31

and ground the recommendation results on the specified item set. In detail,
we can directly perform efficient substring matching algorithms like KMP [35]
between the LLM outputs and the text of candidate items. We also found that
LLMs occasionally generate items that are not present in the candidate set. For
GPT-3.5, such deviations occur in a mere 3% of cases. One can either reprocess
the illegal cases or simply treat the out-of-candidate items as incorrect recom-
mendations.

3 Empirical Studies

Datasets. The experiments are conducted on two widely-used public datasets
for recommender systems: (1) the movie rating dataset MovieLens-1M [24] (in
short, ML-1M) where user ratings are regarded as interactions, and (2) one
category from the Amazon Review dataset [46] named Games where reviews
are regarded as interactions. We filter out users and items with fewer than five
interactions. Then we sort the interactions of each user by timestamp, with
the oldest interactions first, to construct the corresponding historical interaction
sequences. The movie/product titles are used as the descriptive text of an item.
We use item titles in this study for two reasons: (1) to determine if LLMs can
make recommendations based on their intrinsic world knowledge with minimal
information provided, and (2) to conserve computational resources. Exploring
how LLMs use more extensive textual features for recommendations will be the
focus of our future work. Statistics of the preprocessed datasets are presented in
Table 1

Evaluation and Implementation Details. Following existing works [30,33],
we apply the leave-one-out strategy for evaluation. For each historical interaction
sequence, the last item is used as the ground-truth item in test set. The item
before the last one is used in the validation set (used for training baseline meth-
ods). We adopt the widely used metric NDCG@K (in short, N@K) to evaluate
the ranking results over the given m candidates, where K ≤ m. To ease the repro-
duction of this work, our experiments are conducted using a popular open-source
recommendation library RecBole [77]. The historical interaction sequences are
truncated within a length of 50. We evaluate LLM-based methods on all users
in ML-1M dataset and randomly sampled 6, 000 users for Games dataset by
default. Unless specified, the evaluated LLM is accessed by calling OpenAI’s



Large Language Models are Zero-Shot Rankers for Recommender Systems 369

Fig. 2. Analysis of whether LLMs perceive the order of historical interactions.

API gpt-3.5-turbo. The hyperparameter temperature of calling LLMs is set to
0.2. All the reported results are the average of at least three repeat runs to reduce
the effect of randomness.

3.1 Can LLMs Understand Prompts that Involve Sequential
Historical User Behaviors?

In LLM-based methods, historical interactions are naturally arranged in an
ordered sequence. By designing different configurations of H, we aim to exam-
ine whether LLMs can leverage these historical user behaviors and perceive the
sequential nature for making accurate recommendations.

LLMs Struggle to Perceive the Order of Given Historical User Behav-
iors. In this section, we examine whether LLMs can understand prompts with
ordered historical interactions and give personalized recommendations. The task
is to rank a candidate set of 20 items, containing one ground-truth item and 19
randomly sampled negatives. By analyzing historical behaviors, items of interest
should be ranked at a higher position. We compare the ranking results of three
LLM-based methods: (a) Ours, which ranks as we have described in Sect. 2.2.
Historical user behaviors are encoded into prompts using the “sequential prompt-
ing” strategy. (b) Random Order, where the historical user behaviors will be
randomly shuffled before being fed to the model, and (c) Fake History, where
we replace all the items in original historical behaviors with randomly sampled
items as fake historical behaviors. From Fig. 2(a), we can see that Ours has
better performance than variants with fake historical behaviors. However, the
performance of Ours and Random Order is similar, indicating that LLMs are
not sensitive to the order of the given historical user interactions.

Moreover, in Fig. 2(b), we vary the number of latest historical user behaviors
(|H|) used for constructing the prompt from 5 to 50. The results show that
increasing the number of historical user behaviors does not improve, but rather
negatively impacts the ranking performance. We speculate that this phenomenon
is caused by the fact that LLMs have difficulty understanding the order, but
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consider all the historical behaviors equally. Therefore too many historical user
behaviors (e.g., |H| = 50) may overwhelm LLMs and lead to a performance
drop. In contrast, a relatively small |H| enables LLMs to concentrate on the most
recently interacted items, resulting in better recommendation performance.

Table 2. Performance comparison on randomly retrieved candidates. Ground-truth
items are included in the candidate sets. “full” denotes models that are trained on
the target dataset, and “zero-shot” denotes models that are not trained on the target
dataset but could be pre-trained. We highlight the best performance among zero-shot
recommendation methods in bold.

Method ML-1M Games
N@1 N@5 N@10 N@20 N@1 N@5 N@10 N@20

full Pop 22.91 45.16 52.33 55.36 28.35 47.42 52.96 57.45
BPRMF [49] 34.60 59.87 64.29 65.39 44.92 62.33 66.27 68.94
SASRec [33] 61.39 76.39 78.89 79.79 56.90 73.19 75.92 77.14

zero-shot BM25 [50] 4.70 12.68 17.88 33.19 13.92 28.81 34.61 44.35
UniSRec [30] 7.37 18.80 26.67 37.93 18.95 33.99 40.71 48.42
VQ-Rec [29] 5.98 15.48 23.74 35.85 7.28 18.28 26.21 37.62
Sequential 18.28 36.35 42.85 49.02 30.28 45.48 50.57 56.55
Recency-Focused 19.57 37.73 44.23 50.01 34.03 48.77 53.50 59.01
In-Context Learning 21.77 39.59 45.83 51.62 33.95 48.44 53.10 58.92

Triggering LLMs to Perceive the Interaction Order. Based on the above
observations, we find it difficult for LLMs to perceive the order in interaction
histories by a default prompting strategy. As a result, we aim to elicit the order-
perceiving abilities of LLMs, by proposing two alternative prompting strategies
and emphasizing the recently interacted items. Detailed descriptions of the pro-
posed strategies have been given in Sect. 2.2. In Table 2, we can see that both
recency-focused prompting and in-context learning can generally improve the
ranking performance of LLMs, though the best strategy may vary on different
datasets. The above results can be summarized as the following key observation:

Observation 1. LLMs struggle to perceive the order of the given sequential
interaction histories. By employing specifically designed promptings, LLMs
can be triggered to perceive the order of historical user behaviors, leading
to improved ranking performance.

3.2 Do LLMs Suffer from Biases While Ranking?

The biases and debiasing methods in conventional recommender systems have
been widely studied [5]. For LLM-based recommendation models, both the input
and output are natural language texts and will inevitably introduce new biases.
In this section, we discuss two kinds of biases that LLM-based recommendation
models suffer from. We also make discussions on how to alleviate these biases.
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Fig. 3. Biases and debiasing methods in the ranking of LLMs. (a) The position of
candidates in the prompts influences the ranking results. (b) Bootstrapping alleviates
position bias. (c) LLMs tend to recommend popular items. (d) Focusing on historical
interactions reduces popularity bias.

The Order of Candidates Affects the Ranking Results of LLMs. For
conventional ranking methods, the order of retrieved candidates usually will not
affect the ranking results [28,33]. However, for the LLM-based approach that is
described in Sect. 2.2, the candidates are arranged in a sequential manner and
infilled into a prompt. It has been shown that LLMs are generally sensitive to
the order of examples in the prompts for NLP tasks [44,79]. As a result, we
also conduct experiments to examine whether the order of candidates affects the
ranking performance of LLMs. We follow the experimental settings adopted in
Sect. 3.1. The only difference is that we control the order of these candidates in
the prompts, by making the ground-truth items appear at a certain position. We
vary the position of ground-truth items at {0, 5, 10, 15, 19} and present the results
in Fig. 3(a). We can see that the performance varies when the ground-truth
items appear at different positions. Especially, the ranking performance drops
significantly when the ground-truth items appear at the last few positions. The
results indicate that LLM-based rankers are affected by the order of candidates,
i.e., position bias, which may not affect conventional recommendation models.

Alleviating Position Bias Via Bootstrapping. A simple strategy to allevi-
ate position bias is to bootstrap the ranking process. We may rank the candidate
set repeatedly for B times, with candidates randomly shuffled at each round. In
this way, one candidate may appear in different positions. We then merge the
results of each round to derive the final ranking. From Fig. 3(b), we follow the
setting in Sect. 3.1 and apply the bootstrapping strategy to Ours. Each candi-
date set will be ranked for 3 times. We can see that bootstrapping improves the
ranking performance on both datasets.

Popularity Degrees of Candidates Affect Ranking Results of LLMs.
For popular items, the associated text may also appear frequently in the pre-
training corpora of LLMs. For example, a best-selling book would be widely
discussed on the Web. Thus, we aim to examine whether the ranking results are
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Table 3. Zero-shot ranking performance comparison. We highlight the best perfor-
mance in bold. Due to limited budget, we evaluate each LLM only once on 200 sampled
users only for experiments corresponding to this table.

Method ML-1M Games

N@1 N@5 N@10 N@20 N@1 N@5 N@10 N@20

BM25 [50] 4.70 12.68 17.88 33.19 13.92 28.81 34.61 44.35

UniSRec [30] 7.37 18.80 26.67 37.93 18.95 33.99 40.71 48.42

Alpaca-7B [55] 4.00 13.92 23.09 31.54 5.50 14.16 21.67 28.68

Vicuna-13B [9] 6.50 14.75 22.64 33.42 7.00 17.73 24.30 31.22

LLaMA-2-70B-Chat [57] 8.00 25.42 31.19 34.52 21.50 32.30 37.83 41.97

ChatGPT (GPT-3.5) 23.33 42.07 48.80 53.73 23.83 45.69 50.31 55.45

GPT-4 15.50 40.65 46.74 48.42 39.50 58.22 62.88 65.25

affected by the popularity of candidates. However, it is difficult to directly mea-
sure the popularity of item text. Here, we hypothesize that the text popularity
can be indirectly measured by item frequency in one recommendation dataset.
In Fig. 3(c), we report the item popularity score (measured by the normalized
item frequency of appearance in the training set) at each position of the ranked
item lists. We can see that popular items tend to be ranked at higher positions.

Making LLMs Focus on Historical Interactions Helps Reduce Pop-
ularity Bias. We assume that if LLMs focus on historical interactions, they
may give more personalized recommendations but not more popular ones. From
Fig. 2(b), we know that LLMs make better use of historical interactions when
using less historical interactions. From Fig. 3(d), we compare the popularity
scores of the best-ranked items varying the number of historical interactions.
It can be observed that as |H| decreases, the popularity score decreases as well.
This suggests that one can reduce the effects of popularity bias when LLMs focus
more on historical interactions. From the above experiments, we can conclude
the following:

Observation 2. LLMs suffer from position bias and popularity bias while
ranking, which can be alleviated by bootstrapping or specially designed
prompting strategies.

3.3 How Well Can LLMs Rank Candidates in a Zero-Shot Setting?

We further evaluate LLM-based methods on candidates with hard negatives
that are retrieved by different strategies to further investigate what the ranking
of LLMs depends on. Then, we present the ranking performance of different
methods on candidates retrieved by multiple candidate generation models to
simulate a more practical and difficult setting.



Large Language Models are Zero-Shot Rankers for Recommender Systems 373

Fig. 4. Ranking performance measured by NDCG@10 (%) on hard negatives.

LLMs have Promising Zero-Shot Ranking Abilities. In Table 2, we con-
duct experiments to compare the ranking abilities of LLM-based methods with
existing methods. We follow the same setting in Sect. 3.1 where |C| = 20 and
candidate items are randomly retrieved. We include three conventional models
that are trained on the training set, i.e., Pop (recommending according to item
popularity), BPRMF [49], and SASRec [33]. We also evaluate three zero-shot
recommendation methods that are not trained on the target datasets, including
BM25 [50] (rank according to the textual similarity between candidates and his-
torical interactions), UniSRec [30], and VQ-Rec [29]. For UniSRec and VQ-Rec,
we use their publicly available pre-trained models. We do not include ZESRec [15]
because there is no pre-trained model released. In addition, we compare the
zero-shot ranking performance of different LLMs in Table 3. “Recency-Focused”
prompting strategy is used for LLM-based rankers.

From Table 2 and 3, we can see that LLMs with more parameters generally
perform better. The best LLM-based methods outperform existing zero-shot rec-
ommendation methods by a large margin, showing promising zero-shot ranking
abilities. We would highlight that it is difficult to conduct zero-shot recommen-
dations on the ML-1M dataset, due to the difficulty in measuring the similarity
between movies merely by the similarity of their titles. However, LLMs can use
their intrinsic knowledge to measure the similarity between movies and make
recommendations. We would emphasize that the goal of evaluating zero-shot
recommendation methods is not to surpass conventional models. The goal is to
demonstrate the strong recommendation capabilities of pre-trained base models,
which can be further adapted and transferred to downstream scenarios.

LLMs Rank Candidates Based on Item Popularity, Text Features as
Well as User Behaviors. To further investigate how LLMs rank the given
candidates, we evaluate LLMs on candidates that are retrieved by different can-
didate generation methods. These candidates can be viewed as hard negatives for
ground-truth items, which can be used to measure the ranking ability of LLMs
for specific categories of items. We consider two categories of strategies to retrieve
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Table 4. Performance comparison on candidates retrieved by multiple candidate gen-
eration models. Ground-truth items are not guaranteed to be included in the candi-
date sets. “full” denotes models that are trained on the target dataset, and “zero-shot”
denotes models that are not trained on the target dataset but could be pre-trained. We
highlight the best and second-best performance among all recommendation methods
in bold.

Method ML-1M Games
N@1 N@5 N@10 N@20 N@1 N@5 N@10 N@20

full Pop 0.08 1.20 4.13 5.79 0.13 1.00 2.27 2.62
BPRMF [49] 0.26 1.69 4.41 6.04 0.55 1.98 2.96 3.19
SASRec [33] 3.76 9.79 10.45 10.56 1.33 3.55 4.02 4.11

zero-shot BM25 [50] 0.26 0.87 2.32 5.28 0.18 1.07 1.80 2.55
UniSRec [30] 0.88 3.46 5.30 6.92 0.00 1.86 2.03 2.31
VQ-Rec [29] 0.20 1.60 3.29 5.73 0.20 1.21 1.91 2.64
Ours 1.74 5.22 6.91 7.90 0.90 2.26 2.80 3.08

the candidates: (1) content-based methods like BM25 [50] and BERT [14] retrieve
candidates based on the text feature similarities, and (2) interaction-based meth-
ods, including Pop, BPRMF [49], GRU4Rec [28], and SASRec [33], retrieve items
using neural networks trained on user-item interactions. Given candidates, we
compare the ranking performance of the LLM-based model (Ours) and repre-
sentative methods.

From Fig. 4, we can see that the ranking performance of the LLM-based
method varies on different candidate sets and different datasets. (1) On ML-1M,
LLM-based method cannot rank well on candidate sets that contain popular
items (e.g., Pop and BPRMF ), indicating the LLM-based method recommend
items largely depend on item popularity on ML-1M dataset. (2) On Games,
we can observe that Ours has similar performance both on popular candidates
and textual similar candidates, showing that item popularity and text features
contribute similarly to the ranking of LLMs. (3) On both two datasets, the
performance of Ours is affected by hard negatives retrieved by interaction-based
candidate generation models, but not as severe as those interaction-based rankers
like SASRec. The above results demonstrate that LLM-based methods not only
consider one single aspect for ranking, but make use of item popularity, text
features, and even user behaviors. On different datasets, the weights of these
three aspects to affect the ranking performance may also vary.

LLMs Can Effectively Rank Candidates Retrieved by Multiple Can-
didate Generation Models. For real-world recommender systems [10], the
items to be ranked are usually retrieved by multiple candidate generation mod-
els. As a result, we also conduct experiments in a more practical and difficult set-
ting. We use the above-mentioned seven candidate generation models to retrieve
items. The top-3 best items retrieved by each candidate generation model will
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be merged into a candidate set containing a total of 21 items. As a more prac-
tical setting, we do not complement the ground-truth item to each candidate
set. Note that the experiments here were conducted under the implicit prefer-
ence setup [76], indicating that implicit positive instances (not explicitly labeled)
may exist among the retrieved items. A more faithful evaluation might require
a human study, which we intend to explore in our future work. For Ours, we
summarize the experiences gained from Sect. 3.1 and 3.2. We use the recency-
focused prompting strategy to encode |H| = 5 sequential historical interactions
into prompts and use a bootstrapping strategy to repeatedly rank for 3 rounds.

From Table 4, we can see that the LLM-based model (Ours) yields the second-
best performance over the compared recommendation models on most metrics.
The results show that LLM-based zero-shot ranker even beats the conventional
recommendation model Pop and BPRMF that has been trained on the target
datasets, further demonstrating the strong zero-shot ranking ability of LLMs.
We assume that LLMs can make use of their intrinsic world knowledge to rank
the candidates comprehensively considering popularity, text features, and user
behaviors. In comparison, existing models (as narrrow experts) may lack the
ability to rank items in a complicated setting. The above findings can be sum-
marized as:

Observation 3. LLMs have promising zero-shot ranking abilities, espe-
cially on candidates retrieved by multiple candidate generation models with
different practical strategies.

4 Related Work

Transfer Learning for Recommender Systems. As recommender systems
are mostly trained on data collected from a single source, people have sought
to transfer knowledge from other domains [45,70,75,82,84,85], markets [3,51],
or platforms [4,19]. Typical transfer learning methods for recommender sys-
tems rely on anchors, including shared users/items [7,8,45,68,69,83] or rep-
resentations from a shared space [11,18,38]. However, these anchors are usu-
ally sparse among different scenarios, making transferring difficult for recom-
mendations [84]. More recently, there are studies aiming to transfer knowledge
stored in language models by adapting them to recommendation tasks via tun-
ing [1,12,21,53] or prompting [37,39,74]. In this paper, we conduct zero-shot
recommendation experiments to examine the potential to transfer knowledge
from LLMs.

Large Language Models for Recommender Systems. The design of rec-
ommendation models, especially sequential recommendation models, has been
long inspired by the design of language models, from word2vec [2,22,25] to
recent neural networks [28,33,54,81]. In recent years, with the development
of pre-trained language models (PLMs) [14], people have tried to transfer
knowledge stored in PLMs to recommendation models, by either representing
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items using their text features or representing behavior sequences in the for-
mat of natural language [16,21,42,58,67]. Very recently, large language models
(LLMs) have been shown superior language understanding and generation abil-
ities [6,17,47,56,66,78]. Studies have been made to make recommender systems
more interactive by integrating LLMs along with conventional recommendation
models [20,27,36,43,48,59,61,65] or fine-tuned with specially designed instruc-
tions [1,12,21,31,80]. There are also early explorations showing LLMs have zero-
shot recommendation abilities [13,34,41,59,60,63,71,72]. Despite being effective
to some extent, few works have explored what determines the recommendation
performance of LLMs.

5 Conclusion

In this work, we investigated the capacities of LLMs that act as the zero-shot
ranking model for recommender systems. To rank with LLMs, we constructed
natural language prompts that contain historical interactions, candidates, and
instruction templates. We then propose several specially designed prompting
strategies to trigger the ability of LLMs to perceive orders of sequential behav-
iors. We also introduce bootstrapping and prompting strategies to alleviate the
position bias and popularity bias issues that LLM-based ranking models may
suffer.

Extensive empirical studies indicate that LLMs have promising zero-shot
ranking abilities. The empirical studies demonstrate the strong potential of trans-
ferring knowledge from LLMs as powerful recommendation models. We aim at
shedding light on several promising directions to further improve the ranking
abilities of LLMs, including (1) better perceiving the order of sequential historical
interactions and (2) alleviating the position bias and popularity bias. For future
work, we consider developing technical approaches to solve the above-mentioned
key challenges when deploying LLMs as recommendation models. We also would
like to develop LLM-based recommendation models that can be efficiently tuned
on downstream user behaviors for effective personalized recommendations.

6 Limitations

In most experiments in this paper, ChatGPT is used as the primary target
LLM for evaluation. However, being a closed-source commercial service, Chat-
GPT might integrate additional techniques with its core large language model
to improve performance. While there are open-source LLMs available, such as
LLaMA 2 [57] and Mistral [32], they exhibit a notable performance disparity
compared to ChatGPT (e.g., LLaMA-2-70B-Chat vs. ChatGPT in Table 3). This
gap makes it difficult to evaluate the emergent abilities of LLMs on the recom-
mendation tasks using purely open-source models. In addition, we should note
that the observations might be biased by specific prompts and datasets.
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