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Recap: Phase 1

* Phase 2: Recommender Systems

* basics, non-personalized recommendation, collaborative filtering, matrix factorization,
implicit recommendation, ...

 Phase 3: From Foundations to Modern Methods

* embedding learning, Transformer, “small” language models, ... (for search and
recommendation)

* Phase 4: Large Language Models (!!)



Our Capabilities So Far

Customers CDs /Vinyl

* Given a query, find relevant CDs
* Exact matching (Boolean, phrase, proximity, wildcard)

* Ranked retrieval (TF-IDF BM25, learning to rank)
* Link analysis (PageRank, HITYS)



Phase 2

- B4 Phase |:Search Engines

* basics, Boolean and ranked retrieval, link analysis, evaluation, learning to rank (ML +
ranking), ...

 Phase 3: From Foundations to Modern Methods

* embedding learning, Transformer, “small” language models, ... (for search and
recommendation)

* Phase 4: Large Language Models (!!)



Example of Recommender Systems Amazon

Related to items you've viewed
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LinkedIn

You might like
Pages for you

¢ Customer X e CustomerY Texas A&M College of
. Agriculture and Life
» Buys Metallica CD * Does search on Metallica Sgences
* Recommender systems should Higher Education

5,952 followers

* Buys Megadeth CD suggest Megadeth from data

collected about Customer X



Example of Recommender Systems

Examples:
amazoncom.

@ StumbleUpon

.. del.icio.us JErLL

Recommendation movielens
helping you find the right movies

User

Search

H

lost-fm Google

News

ltems: products,

websites, blogs, news, ... You TuhE U IVE




Why do we need recommendation!?

* Shelf space is a scarce commodity for traditional retailers

 Also: TV networks, movie theaters,...

* Web enables near-zero-cost dissemination of information about products

* From scarcity to abundance

* More choice necessitates better filters

* How Into Thin Air (published in 1997) made (published in 1988) a
bestseller

did not become a bestseller until a similar bestseller book appears 9
years later.

* Amazon’s recommendation engine



The Long Tail

- Songs

- available at
«+ both Wal-Mart
- and Rhapsody

Songs
available only
on Rhapsody

100,000 200,000 500,000
Titles ranked by popularity
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Sources: Erik Brynjolfsson and Jeffrey Hu, MIT, and Michael Smith, Carnegie Mellon; Barnes & Noble; Netflix; RealNetworks




The Long Tail

Physical retailers

Prodin threshold

for physical stores
[like Tower Records)

Profit thrashold lor stores
with mo retail owerhaad
(like Amazon.com)

Profit ihreshold for Stores

with mo physical goads
{like Rhapsody|

Just as lower prices can entice
consumaears down the Long Tail,
recommendation engines drive
tham to obscure content they
might not find otherwise.

Amazon sales rank




Types of Recommendations

* Editorial and hand-curated (not personalized)
 “Store Manager’s Pick”

* Promoted items

* Simple aggregates (not personalized)
* Most liked/clicked this month/week/day

* Most recent

* Personalized approaches
* Collaborative Filtering (today)
* Matrix Factorization (Oct 2 and Oct 7)
* Bayesian Personalized Ranking (Oct 9)
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Formal Setup

e X':A set of users

e §:A set of items

* Utility functionu: X X & -> R
* R = set of ratings, which is a totally ordered set
* Eg., |-5 stars

* E.g., real number in [0, 1]
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Utility Matrix U

Alice

Bob

Carol

David

Avatar

1

0.2

LOTR

0.5

Matrix

0.2

Pirates

0.3

0.4
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Key Problems

* Problem |: Gathering “known” ratings for matrix
* How to collect the data in the utility matrix?

* Evaluating the quality of an item solely based on its average rating?

* Problem 2: Extrapolate unknown ratings from the known ones
* Mainly interested in high unknown ratings

* We are not interested in knowing what you don’t like but what you like

* Problem 3: Evaluating extrapolation methods

* How to measure success/performance of recommendation methods!?



Problem 1: Gathering Ratings

* Explicit
* Ask people to rate items

* Doesn’t work well in practice — people can’t be bothered

* Implicit
* Learn ratings from user actions
* E.g., purchase implies high rating
* What about low ratings?
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Problem 2: Extrapolating Utilities

* Key problem: Utility matrix U is sparse
* Most people have not rated most items
* Cold start:
* New items have no ratings

* New users have no history

* Solutions to be introduced today:
* Content-Based Approach

* Collaborative Filtering
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Content-Based Approach
(Calculating User-ltem Similarity)
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Content-Based Recommender Systems

ltem profiles

* |dea: Recommend items to

user x similar to previous ' likes
items rated highly by x - | > ‘ A

* Example:

* Movie recommendations:
Recommend movies with recommend build
same actor(s), director,

genre, ... \VJ

with “similar”’ content l Circles
Triangles

* Websites, blogs, news:
Recommend other sites . ‘ match Red

User profile




Profiles

* |tem Profile i
* A set (vector) of features
* Movies: author, title, actor, director, ...

* Text: Set of “important” words in document (e.g., based on TF-IDF)

 User Profile x

* Weighted average of rated item profiles

* Prediction

xTi

1[Il

* Given x and i, estimate u(x, i) = cos(x,i) =
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Example

Rating scale: R = {1,0, —1}

User x has rated 3 songs
* Song |:“sunny day”, rating: 1
* Song 2:“cloudy day”, rating: 0
* Song 3:“rainy day”, rating: —1

Let’s simplify the model and use Boolean representation (rather than TF-IDF)

ltem profiles

sunny cloudy rainy day
Song | I 0 0 I
Song 2 0 I 0 I
Song 3 0 0 I I
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Example

* User x has rated 3 songs
* Song |:“sunny day”, rating: 1
* Song 2:“cloudy day”, rating: 0
* Song 3:“rainy day”, rating: —1

* Item profiles

Song |
Song 2 0 I 0 I
Song 3 0 0 I I

* User profile:User x =1 X Song | + 0 X Song 2 + (—1) X Song 3

User x

20



Example

User profile: User x = 1 X Song | + 0 X Song 2 + (—1) X Song 3

User x

New Song:“sunny cloudy”
Will User x like it?

Profile of New Song

User x
11T
* u(User x, New Song) = cos _01 , (1) = \/§>1<\/§ — %
01 10]
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Content-Based Recommender Systems: Pros

+ No need for data on other users

* No cold-start or sparsity problems

+ Able to recommend to users with unique tastes

+ Able to recommend new & unpopular items

* No first-rater problem

+ Able to provide explanations

* Can provide explanations of recommended items by listing content-features that
caused an item to be recommended
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Content-Based Recommender Systems: Cons

* — Finding the appropriate features is hard
* E.g.,images, movies, music
* — Recommendations for new users
* How to build a user profile!?
* — Overspecialization
* Never recommends items outside user’s content profile
* People might have multiple interests

* Unable to exploit quality judgments of other users
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Collaborative Filtering
(Harnessing Quality Judgments of Other Users)
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Collaborative Filtering

 Consider user x

* Step |:Find a set V' of other users whose
ratings are “‘similar” to Xx’s ratings

* Step 2: Estimate X’s ratings based on
ratings of users in

prefer
il e (i

similar

\ pref®
recommendation '

recommended
iterms

prefer

ance

N

search

database
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Step 1: Finding Similar Users

* How to define User-User similarity?

* Example:
User x & % qedesk
User y ¢ ek ek

* (Bad) Solution |:Jaccard Similarity (between two sets)

(A B) — |A N B|
J(4,B) = |A U B|

{145},  y:{1,34), J(xy) =2

Problem: Ignores the value of the rating




Step 1: Finding Similar Users

* How to define User-User similarity?

* Example:
User x & % qedesk
User y ¢ ek ek

* (Bad) Solution 2: Cosine Similarity (between two vectors)
« x:[1,0,0,1,3]"
« y:[1,0,2,2,0]"

* Problem:Treats missing ratings as “negative”



Step 1: Finding Similar Users

* How to define User-User similarity?

* Example:
Item | Item 2 Item 3 Item 4 Item 5
User X % E Kekek
User y % skek skl

e Solution 3: Pearson Correlation Coefficient

* Consider 8, = items rated by both users x and y
Ziesxy(Uxi B Ux)(in B Uy)

Jziegxy(Uxi — Uy)? \/ZiESxy(in - Uy)?

Uy, Uy average rating given by x and y

sim(x,y) =




How to understand the Pearson Correlation Coefficient?

Ziesxy(Uxi — Ux)(in - Uy)

\/Ziegxy(uxi — Uy)? \/ZiESxy(U)’i - Uy)?

sim(x,y) =

* Original Table

& gk

User x *

User y % ok ok

* Step |:Subtract the (row) mean

User x |-5/3=-2/3 1-5/3=-2/3 3-5/3=4/3
User y |-5/3=-2/3 2-5/3=1/3 2-5/3=1/3
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How to understand the Pearson Correlation Coefficient?

Ziesxy(Uxi — Ux)(in - Uy)

\/Ziegxy(Uxi — Uy)? \/ZiESxy(U)’i - Uy)?

sim(x,y) =

* Original Table

& gk

User x &
User y & qeok Heok
 Step 2: Only keep the column rated by  Step 3: Calculate the Cosine Similarity
both x and y * Pearson is equivalent to Cosine after
 keml  kem4 some data normalization steps!
User x |-5/3=-2/3 1-5/3=-2/3
User y |-5/3=-2/3 2-5/3=1/3
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Step 2: Rating Prediction

* Let )V be the set of k users that are most similar to x who have rated item i
* Prediction for item i of user x:
* Simple average:
Uyi =% Z in
yEN
* Weighted by User-User similarity:

_ Zye]\f Sim(x' y) | in
Zye]\f Sim(x' Y)

Uxi
* Many other tricks possible...

* So far, User-User Collaborative Filtering

* Using User-User similarity to predict User-ltem similarity
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How about Item-ltem Collaborative Filtering?

Using Item-ltem similarity to predict User-ltem similarity

Step |:For item i, find other similar items

Step 2: Estimate rating for item i based on ratings for similar items

Can use same similarity metrics and prediction functions as in user-user model
* E.g.,Weighted by ltem-Item similarity:
~ Ljen Sim(i, ) - Uy;
Ljen sim(i, j)

Uxi

sim(i, j): Pearson Correlation Coefficient between item i and item j

N': the set of items rated by x that are similar to i
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Example (| V| = 2)

users

1 12 |3 |4 |5 |6 8 19 (1011 |12

E 3 5 5 4

2 5 |4 2 |1 |3
A 3 12 |4 1 |2 4 |3 |5
O

4 2 |4 5 4 2

5 4 |3 |4 |2 2 |5

6 |1 3 3 2 4

- unknown rating

- rating between | to 5

33



Example (| V| = 2)

users

1 12 |3 |4 |5 |6 |7 |8 |9 [10]11]12

1 11 3 5 4

2 5 |4 4 2 (1 |3
A 3 12 |4 1 |2 3 4 |3 |5
O

4 2 |4 5 4 2

5 4 |3 |4 |2 2 |5

6 |1 3 3 2 4

. - estimate rating of CD | by user 5
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Example (| V| = 2)

users

1 |12 |3 |4 |5 |6 |7 [8 |9 [10 |11 |12 sim(1,")
1 |1 3 ) 4 1.00
2 5 |4 4 2 (1 |3 018
o 3 (2 |4 1 3 4 |3 |5 041
4 2 |4 4 2 0.10
5 4 (3 |4 |2 2 |5 03]
6 1 3 2 4 0.59

Neighbor selection: Identify movies that are similar to CD 1, rated by user 5
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Example (| V| = 2)

CDs

users

1 (2 |3 |4 |5 |6 [7 |8 |9 [10[11 |12
1 |1 3 5 4
2 5 |4 4 2 |1 |3
3 |2 |4 1 3 4 |3 |5
4 2 |4 4 2
5 4 |3 |4 |2 2 |5
6 |1 3 2 4

Predict by taking weighted average:
Us; =(041%x2+0.59%x3)/(041+0.59) =26

sim(1,)

1.00
-0.18
041
-0.10
-0.31
0.59
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Collaborative Filtering: Common Practice

e So far,
_ Ljen Sim(i, ) - Uy;j

U..
. Zje]V“ sim(i, )

* In practice,
Yjen Stim(i,J) - (Uyj — byj)

U.. = b..
xl o ZjEN sim(i, j)

b..;: baseline estimate for U,; (byi = U+ by + b;)

p: overall mean CD rating

b,: rating deviation of user x, which is the (avg. rating given by user x) — u

b;: rating deviation of item i, which is the (avg. rating given to item i) — u
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ltem-ltem vs. User-User

* In practice, it has been observed
that item-item often works better
than user-user!

* Why? Items are simpler, users have
multiple tastes

* It is impossible for a piece of
music to be both 60’s rock and
1'700’s baroque.

* There are individuals who like
both 60’s rock and 1700’s
baroque, and who buy
examples of both types of
music.

Pirates

LOTR Matrix

0.8

Avatar

Alice 1

Bob 0.5
0.9 1

David 1

0.3
0.8
0.4

Carol
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Collaborative Filtering: Pros and Cons

+ Works for any kind of item

* No feature selection (e.g., text information) needed

- Cold start

* Need enough users in the system to find a match

- Sparsity
* The user/ratings matrix is sparse

 Hard to find users that have rated the same items

- First rater
* Cannot recommend an item that has not been previously rated

* New items & esoteric items

- Popularity bias
* Cannot recommend items to someone with unique taste

* Tends to recommend popular items
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Hybrid Methods

* Implement two or more different recommenders (e.g., content-based and collaborative
filtering) and combine predictions

* Perhaps using a linear model

* “Learning to Recommend”

* Add content-based approaches to collaborative filtering
* Building item profiles to deal with the new item problem

* Building demographics to deal with the new user problem

40



Evaluation of Recommender Systems

41



Evaluation of Recommender Systems

users

Wl W01+
Ul

CDs
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Evaluation of Recommender Systems

users

Training Set

/

Wl W01+
Ul

CDs

Test Set

2 | 1 .?/




Evaluation of Recommender Systems

* Compare predictions with known ratings. (There are many predictions whose ground
truth is unknown.)

* Root-mean-square error (RMSE)

. \/%Zx’i(Uxi — U;;l-)2 where U, is predicted, and U,; is the true rating of x on i;

M is the number of testing samples
* Precision@10

. Among the top 10 items with known ratings, how many are relevant (e.g., =24 stars)
10

« nNDCG@I0
* Recall@10

. Among the top 10 items with known ratings, how many are relevant (e.g., 24 stars)

Among ALL items with known ratings, how many are relevant (e.g., 24 stars)
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Final Comments

* Problem with RMSE: In practice, our main interest is in accurately predicting high ratings.

* It is far more important to predict whether you would give 5 stars or 4 stars to a
CD you might like than to predict whether you would give 2 stars or | star to one

you dislike.
* However, RMSE may penalize methods that perform well on high ratings but poorly
on others.

* Tip: Leverage ALL the data
* Don’t try to reduce data size in an effort to make fancy algorithms work
* Simple methods on large data do best

* More data beats better algorithms:
http://anand.typepad.com/datawocky/2008/03/more-data-usual.html
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Thank You!

Course Website: https://yuzhang-teaching.github.io/CSCE670-F25.html
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