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Recap: (Item-Item) Collaborative Filtering

* Some Users have rated some Items (e.g., CDs, movies).

* Derive unknown User-Iltem ratings from those of “similar” ltems

Step |:For item i, find other similar ltems V' (e.g., using the Pearson Correlation
Coefficient)

Step 2: Estimate rating for item i
~ Ljen Sim(i, ) - Uy;
Ljen Sim(i, j)

Uxi

sim(i, j): Pearson Correlation Coefficient between item i and item j



The Netflix Prize

NETELIX

* 100 million ratings, 480,000 users, 17,770 movies
* 6 years of data: 2000-2005
* Test data

* Last few ratings of each user (2.8 million)

e Evaluation criterion: RMSE

. \/%Zx,i(Uxi — U;;l-)2 where Uy, is predicted, and U,; is the true rating of x on i; M is
the number of testing samples
* Netflix’s system RMSE: 0.9514
* Competition
* 2,700+ teams

* $1 million prize for 10% improvement on Netflix



Recap: RMSE
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Recap: RMSE
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Performance of Various Models

Basic Collaborative Filtering: 0.94

Global average: |.1296

User average: 1.0651
Movie average: 1.0533

Netflix: 0.9514

Grand Prize: 0.8563



Recap: Modeling Deviations

* Basic Collaborative Filtering:
_ Ljen Sim(i, ) - Uy;j

U..
. ZjeJV“ sim(i, )

* In practice,
Yjen Stm(i,j) - (Uyj — by))

U.. = b..
xl o ZjEN sim(i, j)

b..;: baseline estimate for U,; (byi = U+ by + b;)

p: overall mean movie rating

b,: rating deviation of user x, which is the (avg. rating given by user x) — u

b;: rating deviation of item i, which is the (avg. rating given to item i) — u



One Step Further: Learning the Weight

Uyxi = by + z Wi (ij - bxj)
jen

* w;j is learned from training data
* Weallow 2 jcp w;j # 1.
* w;; models the interaction between pairs of movies.

* |t does not depend on user x.
* What is the objective!?

% \2
« RMSE! \/%Zx,i(Uxi - Uy;)

* Or equivalently: )., ;(Uy; — Uzi)?




Recommendations via Optimization

Jw) = ) W= Uz)*= ) (

X,

byi + Z Wl](UX] x])

JEN

"

* How to find the values of w;;?

. Gradient descent!

5y

(for j € )
aJ
an'j
(for j & V)

bxl + Z WLJ(UXJ x])

JEN

L‘) (Uxj — by;)

=0




Performance of Various Models

Basic Collaborative Filtering: 0.94

CF + Bias + Learned Weights: 0.91

Global average: |.1296

User average: 1.0651
Movie average: [.0533

Netflix: 0.9514

Grand Prize: 0.8563
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Latent-Factor Models
(Matrix Factorization)
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There are certain latent factors that influence users’ ratings.

4
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Latent-Factor Models

items

factors
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* For now, let’s assume this is mathematically doable.

* U has missing entries but let’s first ignore that!

Q

factors

users

The number of factors is small.
In other words, Q and P are “thin”.

1.1

14

24

14

29

12

2.1

1.7

* Basically, we will want the reconstruction error to be small on known ratings and we
don’t care about the values on the missing ones.
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How to interpret Q and P?

factors

14 | .3 -1 14

1.2

items

21 | -4 .6 1.7 | 24 | 9 -3

X
factors

e Let’s assume that the first factor is the level of seriousness.
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How to interpret Q and P?

factors

A

-4

2

-5

B

-2

3

items

1.1

ﬂ2.1

21

T

Q

factors

1.1

1.4

2.4

14

29

1.2

2.1

1.7

e Let’s assume that the first factor is the level of seriousness.

* The seriousness of User | is I.1

* The seriousness of Movie 4 is |.1

* So,User | may like Movie 4
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How to interpret Q and P?

factors
1 -4 |2
s e . users
Al . "
cl=1s s O 1.1 5 | -2 5 |8 |-4 14 | 24 | -9
O X 8 8 14 | 3 1 |14 | 29 12 | -1 |13
o |11 21] 3 U
Rt a |21 17124 l9 |-3 |24 7 |-6 | 1
7 1241 | 2 =
T 17 |3 PT

e Let’s assume that the first factor is the level of seriousness.

* The seriousness of User | is I.1

e The seriousness of Movie 5 is -0.7
* So,User | may NOT like Movie 5
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Of course, we need to consider all the factors.

items

 Ratings as “sum of products

users
1 3 5 4
5| 4 1
2| 4 1] 2 5
2| 4 5 2
4] 3| 4| 2 2
1 3 3 4

2

items

bRl

factors
A -4 2
-5 .6 5 g
-2 3 5 X 8
11 21| 3 5]
-7 2.1 -2 H(E
-1 g 3
Q
Uyi =

z Qip * Pxg

¢: all factors

users
1.1 5 | -2 5 |8 |-4 14 |24 | -9
-8 14 | 3 |1 |14 |29 12 | -1 [ 13
2.1 17 | 24 | 9 3 |4 7 |-6 |
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items

Estimating the Missing Rating

* Ratings as “sum of products”

USers

1 ) 5 4
54D 1
2| 4 11 2 5
2| 4 5 2
4( 3| 4| 2 2
1 3 3 4

U

Uyi =

¢: all factors

2

factors
1 |-a ]2
s | e 5 users
7)) ' ' )
AR C ol -2 13 |52 [|-58 8 [-4]13 [14]24]-9
3 X 8 8 | 7 14l 3 11 [14a|20]-7 [12 -1 |13
o |11 ]21] 3 O
Nt a |21 ]-4 |6 [17||2aflo [-3 |4 |8 [7 [-6 [
14 |7 |3 PT

Q

Py = (=0.5) X (=2) + 0.6 X 0.3 + 0.5 X 2.4 = 2.38
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How to find Q and P?
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Singular Value Decomposition (SVD)

A~ UZVT

* |Input matrix: 4
e Step |: Compute ATA
* Step 2: Find the eigenvalues of eigenvectors of
ATA
* Eigenvalues A, =24, =--=21,=20
* Eigenvectors v, v, ..., v,

* Step 3: Consider the largest k eigenvalues and
their corresponding eigenvectors only. (The
choice of k depends on how closely you wish
to approximate)

e V =[v,v,, .., 0]

>~ S

U

S

ﬁ
[ \
H!
y VI
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Singular Value Decomposition (SVD)

A~ UZVT

* Step 2: Find the eigenvalues of eigenvectors of
ATA
* Eigenvalues A, =24, =:-=21,=20
* Eigenvectors v, v, ..., v,

* Step 3: Consider the largest k eigenvalues and
their corresponding eigenvectors only.

eV =[v,v,, .., 0]
+ 3 = diag{Ay, s r )
« Step 4:U = AVXI~1

* Or you can do Steps |-3 again for AA”
(rather than AT 4) to get U

>~ S

U

S

ﬁ
[ \
H!
y VI
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SVD is good, but ...

* SVD gives the minimum reconstruction error if we know all entries in A.
2
min ) (4;; — [UZVT];;
min > (4~ [UZV"],)

* Exactly our objective!

* Using SVD for our matrix factorization task!?

Input Matrix: A

* BUT, our user-item matrix U has missing values!
* How to interpret missing values? (as 0? a bad idea)

* Does the property of minimum reconstruction error still hold if there are missing
values? (we don’t know)
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items

Factorizing a Matrix with Missing Values

min
QP

q; (item vector): the row corresponding to item i in Q

pL (user vector): the column corresponding to user x in PT

z (Uyi — [QP"],)? = Z (Uxi — qiP3)?

(x,i) known

users
1 3 5 5 |4
5| 4 4 1] 3
2| 4 1] 2 3 | 4|35 ~
~y
2| 4| |5 4 2
4| 3| 4| 2 2[5
1 3 |3 2 4

items

factors

-4

6

3

21

21

T

Q

factors

(x,i) known

users
11 | -2 |3 |5 |-2 5 |8 |-4 14 |24 | -9
8 | .7 14 |3 |1 |14 |29 12 -1 |13
21 | -4 |6 |17 [24 |9 3 |4 7 |-6 |1
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Overfitting

min z (Uxi — qipx)°
, (x,i) known

* q; (item vector): the row corresponding to item i in Q

 pL (user vector): the column corresponding to user x in PT

* No closed form solution.
* All item vectors and user vectors are parameters to be learned!

* Overfitting: With too much freedom (too many free parameters) the
model starts fitting noise in the training data, thus not generalizing well

to unseen test data.
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Regularization

* Model parameters can be “complicated” where there are sufficient training data

* Model parameters should be “simple” where training data are scarce

1 ) bl + cZZuqiuZ]
X [

Original Objective Regularization Term

min z (Uxi = qipx)* +

(x,i) known

(c1 and ¢, are hyperparameters)

* How to understand the Regularization Term?
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The Effect of Regularization
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The Effect of Regularization

Geared
towards
females

* If the user has rated
hundreds of movies, it
stays about where the

Serious | :
The Color Braveheart data places it.
Purple Amadeus
Lethal Weapon
Sense and
Sensibility Geared
« >  towards
males
The Lipn King
The I.:’ri.ncess Independence
Diaries Day exhibit
' preference
Funny
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The Effect of Regularization

* If the user has rated
only a handful, it is
pulled back towards

Serious o
Purple Amadeus
cean’s | | Lethal Weapon
Sense and
Geared Sensibility Geared
no preference,
towards <« “ofault” »  towards
females v males
. . Dumb and
The Lion King ™., Dumber
The I.3r|.ncess Independence
Diaries Day
Funny
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Gradient Descent

rgll? ] = z (Uxi lpx)z

qZupxuz +c ZuqluZ]

 Step I|:Initialize Q and P using SVD (pretend missing ratings are 0)

(x,i) known

* Step 2: Gradient descent
=p o

x¢ .X'(]b napx¢
apxd) (x,i) known xi — i x ip 1 xqb
d]
* Qip = Qip — 1 2Q:s

0]

* 90 i Z(x l) known( Z(UXL qlpx)qub + 2C2Ql¢)



Learned ltem Vectors in the Latent Factor Space
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Performance of Various Models

Basic Collaborative Filtering: 0.94

CF + Bias + Learned Weights: 0.91
Latent Factor Model: 0.90

Global average: |.1296

User average: 1.0651
Movie average: 1.0533

Netflix: 0.9514

Grand Prize: 0.8563
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Extending Latent Factor Models to Include Bias

32



Bias, Again

e Basic Latent Factor Model: U, = q;p.

 Latent Factor Model with Bias: U,;=u+b,+b; +q;pk
* w:overall mean movie rating
* b,:rating deviation of user x

* b;:rating deviation of item i

user bias movie bias user-movie interaction




Bias, Again

e Latent Factor Model with Bias:

Uy =@+ by + b; + q;p5,

p: overall mean movie rating

* Eg,u=27

b, rating deviation of user x (to be learned)

* E.g., Bob is a critical reviewer. Based on the training data, his rating will be 0.7
star lower than the mean = b, = —0.7.

b;: rating deviation of item i (to be learned)

* E.g., Star Wars will get a mean rating of 0.5 higher than the average = b; = 0.5

q; and p,: vector of user x and item [ in the latent factor space (to be learned)
e E.g., based on the genre, Bob likes Star Wars = q;pL = 0.3
* Uy =27—-07+05+03=28
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Fitting the New Model

Jmin, ] = D Wi = (u+ by + by + qp}))’
(x,i) known

1 ) Ipll? + ¢ ) Ilaill? +c5 ) lIbll? + qz”biuZ]
X [ X [

* Both biases b,, b; as well as interactions q;, p, are treated as parameters to be learned
via gradient descent

_|_

aJ d]

* xqb—qub_nﬁ; Q‘¢_Q‘¢_n6Qi¢
0] a]
'bx_bx_na_bxr bl_bl—ﬂa—bi



Performance of Various Models

|0

* Which hyperparameter determines the
number of parameters?
* Number of factors

CF (no time bias)
Basic Latent Factors

Latent Factors w/ Biases

100

Millions of parameters



Performance of Various Models

Global average: |.1296

User average: 1.0651
Movie average: 1.0533

Netflix: 0.9514

Basic Collaborative Filtering: 0.94
CF + Bias + Learned Weights: 0.91

Latent Factor Model: 0.90
Latent Factor Model + Bias: 0.89

Grand Prize: 0.8563
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Extended Content: The Netflix Challenge 2006-2009
(will not appear in quizzes or the exam)
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Temporal Biases Of Users [Koren, KDD 2009]

* A sudden surge in the average movie rating observed
in early 2004.

* Possible reasons:
* Improvements in Netflix
* GUI improvements

* Meaning of rating changed

* For the rating of a single movie, its age is an
important factor.

* Users prefer the newest movies

* For not that new movies, people believe even
older movies are just inherently better
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Temporal Biases and Factors

e Latent Factor Model with Constant Bias: U,; = u + b, + b; + q;pL
* Latent Factor Model with Temporal Bias: U,; = u + b, (t) + b;(t) + q;p

* Make parameters b, and b; to depend on time
* Parameterize time-dependence by linear trends
* Each bin corresponds to 10 consecutive weeks
* bi(t) = b; + b; gin(p)

* One can further add temporal dependence to user/item vectors

* p,(t):user preference vector on day ¢t

T
X

40



Adding Temporal Effects

CF (no time bias)

Basic Latent Factors

CF (time bias)

Latent Factors w/ Biases
-#-+ Linear time factors

+ Per-day user biases
+ CF

100

Millions of parameters



Performance of Various Models

Basic Collaborative Filtering: 0.94

CF + Bias + Learned Weights: 0.9
Latent Factor Model: 0.90
Latent Factor Model + Bias: 0.89

Latent Factor Model + Bias + Time: 0.876

Global average: |.1296

User average: 1.0651
Movie average: 1.0533

Netflix: 0.9514

Still no prize!

Getting desperate.

Grand Prize: 0.8563
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BellKor Recommender System: Winner of the Netflix Challenge

-5 &

Netflix Prize /=

Home Rules Leaderboard Register Update Submit  Download

June 26,2009
RMSE = 0.8558

Lea derboa rd Display top 20 leaders.

Rank Team Name Best Score % Improvement Last Submit Time
1 Bellkors Pragmatic Chags i 0.8558 ! 10.05 2009-06-26 18.42:37

Grand Prize - RMSE <= 0.8563

2 PragmaticTheony ' 0.8582 ' 9,80 o 2009-06-25 22:15:51
3 Bellkor in BigChaos ! 0.8530 a.71 2009-05-13 08:14:09
4 Grand Prize Team ! 0.8593 ! 9.68 o 2009-06-12 08:20:24
5 Dace 0.8604 9.56 2009-04-22 055703
]

BigChaos ! 08613 ! 9.47 2009-06-23 23:06:52

7 Bellkor 0.8620 9,40 2009-06-24 07.16:02

Gravity P 08634 925 2009-04-22 18:31:32

Opera Solutipns 0.8638 9.21 2009-06-26 23:18:13
10 BruceDengDaoCiYiYou . 0B8e38 9.21 | 2009-06-27 00:55:55
11 pengpengzhou L 08638 9.21 2009-06-27 01:06:43
12 vecior L 08639 9.20 2009-06-26 13:49:04
13 xiangliang 0.8639 9.20 2009-06-26 07:47:34
14 Feeds2 f 08641 9.18 | 2009-D8-26 22:51.55

15 Ces 0.8642 917 2009-06-24 14:34:14



A “Kitchen Sink” Approach

All developed CF models .
. * For a research project,

 atent User and th.IS is a very b?.d idea
> Movie Features (since you don’t know
which part works or
why).

E
BRISMF  svD-Timeor Mg i ram o, B3 ak2

MF1 . K4
Movi Nsrrr.? 1.,Dr BaseroM day ;¢ FRBM ~3K1 gys gyp++
g 923 DRBMSVDHisvDz _ GTE

KMNMN+time
MSVD1 Integrated M. RBM

SVD-AUF Movie KNN - CTD/MTD  SVDNN
User KNN Classif. Model<NMN 1...5 Asym. 1/2/3

"Iy

‘ th_»e Pmbfe
Blending Blending * To achieve a certain level

PYYYYIIIINY  vyevYy of model performance

(and win a prize), this
might be an unavoidable
path to take.

approx. 500 predictors

200 blends 30 blends

Linear Blend  10.09 % improvement

Michael Jahrer / Andreas Toscher — Team BigChaos — September 21, 2009



BellKor Recommender System: Rough Idea

Multi-scale modeling of the data: Combine top
level, “regional” modeling of the data, with a
refined, local view.

Global;

* QOverall deviations of users/movies

Matrix Factorization:

* Addressing “regional” effects

Collaborative Filtering:

* Extract local patterns

Global Effects

Matrix Factorization
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Next Lecture

* Finish the story of the Netflix Prize

e Quiz 2!
* All policies are the same as Quiz | (humber of questions, time limit, grading, etc.)
* Scope:

* Lecture 8 (Statistical Significance Test in IR Evaluation)

Lectures 9 & 10 (Learning to Rank)

Lecture || (Collaborative Filtering)

Lecture 12 (Matrix Factorization)

Homework |



Thank You!

Course Website: https://yuzhang-teaching.github.io/CSCE670-F25.html
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