

CSCE 670 - Information Storage and Retrieval

Lecture 12: Recommender Systems (Matrix Factorization)

Yu Zhang

yuzhang@tamu.edu

October 2, 2025

Course Website: https://yuzhang-teaching.github.io/CSCE670-F25.html

Recap: (Item-Item) Collaborative Filtering

- Some Users have rated some Items (e.g., CDs, movies).
- Derive unknown User-Item ratings from those of "similar" Items
- Step I: For item i, find other similar Items \mathcal{N} (e.g., using the Pearson Correlation Coefficient)
- Step 2: Estimate rating for item i

$$U_{xi} = \frac{\sum_{j \in \mathcal{N}} sim(i, j) \cdot U_{xj}}{\sum_{j \in \mathcal{N}} sim(i, j)}$$

sim(i,j): Pearson Correlation Coefficient between item i and item j

The Netflix Prize

- Training data
 - 100 million ratings, 480,000 users, 17,770 movies
 - 6 years of data: 2000-2005
- Test data
 - Last few ratings of each user (2.8 million)
 - Evaluation criterion: RMSE
 - $\sqrt{\frac{1}{M}\sum_{x,i}(U_{xi}-U_{xi}^*)^2}$ where U_{xi} is predicted, and U_{xi}^* is the true rating of x on i;M is the number of testing samples
 - Netflix's system RMSE: 0.9514
- Competition
 - 2,700+ teams
 - \$1 million prize for 10% improvement on Netflix

Recap: RMSE

Recap: RMSE

Performance of Various Models

Recap: Modeling Deviations

Basic Collaborative Filtering:

$$U_{xi} = \frac{\sum_{j \in \mathcal{N}} sim(i, j) \cdot U_{xj}}{\sum_{j \in \mathcal{N}} sim(i, j)}$$

• In practice,

$$U_{xi} = b_{xi} + \frac{\sum_{j \in \mathcal{N}} sim(i,j) \cdot (U_{xj} - b_{xj})}{\sum_{j \in \mathcal{N}} sim(i,j)}$$

- b_{xi} : baseline estimate for U_{xi} $(b_{xi} = \mu + b_x + b_i)$
- μ : overall mean movie rating
- b_x : rating deviation of user x, which is the (avg. rating given by user x) μ
- b_i : rating deviation of item i, which is the (avg. rating given to item i) μ

One Step Further: Learning the Weight

$$U_{xi} = b_{xi} + \sum_{j \in \mathcal{N}} w_{ij} \left(U_{xj} - b_{xj} \right)$$

- w_{ij} is learned from training data
 - We allow $\sum_{j \in \mathcal{N}} w_{ij} \neq 1$.
- w_{ij} models the interaction between pairs of movies.
 - It does not depend on user x.
- What is the objective?
 - RMSE! $\sqrt{\frac{1}{M}\sum_{x,i}(U_{xi}-U_{xi}^*)^2}$
 - Or equivalently: $\sum_{x,i} (U_{xi} U_{xi}^*)^2$

Recommendations via Optimization

$$J(w) = \sum_{x,i} (U_{xi} - U_{xi}^*)^2 = \sum_{x,i} \left(\left[b_{xi} + \sum_{j \in \mathcal{N}} w_{ij} (U_{xj} - b_{xj}) \right] - U_{xi}^* \right)^2$$

- How to find the values of w_{ij} ?
 - Gradient descent!

$$\frac{\partial J}{\partial w_{ij}} = 2 \sum_{x,i} \left(\left[b_{xi} + \sum_{j \in \mathcal{N}} w_{ij} (U_{xj} - b_{xj}) \right] - U_{xi}^* \right) (U_{xj} - b_{xj})$$
(for $j \in \mathcal{N}$)

$$\frac{\partial J}{\partial w_{ij}} = 0$$
(for $j \notin \mathcal{N}$)

Performance of Various Models

Latent-Factor Models (Matrix Factorization)

There are certain latent factors that influence users' ratings.

Latent-Factor Models

• $\boldsymbol{U} \approx \boldsymbol{Q} \boldsymbol{P}^T$

The number of factors is small. In other words, Q and P are "thin".

- For now, let's assume this is mathematically doable.
 - U has missing entries but let's first ignore that!
 - Basically, we will want the reconstruction error to be small on known ratings and we don't care about the values on the missing ones.

How to interpret Q and P?

• Let's assume that the first factor is the level of seriousness.

How to interpret Q and P?

- Let's assume that the first factor is the level of seriousness.
 - The seriousness of User I is I.I
 - The seriousness of Movie 4 is 1.1
 - So, User I may like Movie 4

How to interpret Q and P?

- Let's assume that the first factor is the level of seriousness.
 - The seriousness of User I is I.I
 - The seriousness of Movie 5 is -0.7
 - So, User I may NOT like Movie 5

Of course, we need to consider all the factors.

Ratings as "sum of products"

$$U_{xi} = \sum_{\phi: \text{ all factors}} Q_{i\phi} \cdot P_{x\phi}$$

Estimating the Missing Rating

• Ratings as "sum of products"

$$U_{xi} = \sum_{\phi: \text{ all factors}} Q_{i\phi} \cdot P_{x\phi} = (-0.5) \times (-2) + 0.6 \times 0.3 + 0.5 \times 2.4 = 2.38$$

How to find Q and P?

Singular Value Decomposition (SVD)

$$A \approx U \Sigma V^T$$

- Input matrix: A
- Step I: Compute $A^T A$
- Step 2: Find the eigenvalues of eigenvectors of A^TA
 - Eigenvalues $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0$
 - Eigenvectors $v_1, v_2, ..., v_n$
- Step 3: Consider the largest k eigenvalues and their corresponding eigenvectors only. (The choice of k depends on how closely you wish to approximate)
 - $V = [v_1, v_2, ..., v_k]$

Singular Value Decomposition (SVD)

$$A \approx U \Sigma V^T$$

- Step 2: Find the eigenvalues of eigenvectors of A^TA
 - Eigenvalues $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0$
 - Eigenvectors $v_1, v_2, ..., v_n$
- Step 3: Consider the largest k eigenvalues and their corresponding eigenvectors only.
 - $V = [v_1, v_2, ..., v_k]$
 - $\Sigma = \text{diag}\{\sqrt{\lambda_1}, \sqrt{\lambda_2}, \dots, \sqrt{\lambda_k}\}$
- Step 4: $U = AV\Sigma^{-1}$
 - Or you can do Steps 1-3 again for AA^T (rather than A^TA) to get U

SVD is good, but ...

• SVD gives the minimum reconstruction error if we know all entries in A.

$$\min_{\boldsymbol{U},\boldsymbol{\Sigma},\boldsymbol{V}} \sum_{i,j} (A_{ij} - [\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T]_{ij})^2$$

- Exactly our objective!
- Using SVD for our matrix factorization task?

Latent Factor Model	User-Item Matrix: <i>U</i>	User-Factor Matrix: Q	Factor-Item Matrix: P^T
SVD	Input Matrix: A	U	$oldsymbol{\Sigma}oldsymbol{V}^T$

- BUT, our user-item matrix U has missing values!
 - How to interpret missing values? (as 0? a bad idea)
 - Does the property of minimum reconstruction error still hold if there are missing values? (we don't know)

Factorizing a Matrix with Missing Values

$$\min_{\boldsymbol{Q},\boldsymbol{P}} \sum_{(x,i) \text{ known}} (U_{xi} - [\boldsymbol{Q}\boldsymbol{P}^T]_{xi})^2 = \sum_{(x,i) \text{ known}} (U_{xi} - \boldsymbol{q}_i \boldsymbol{p}_x^T)^2$$

- q_i (item vector): the row corresponding to item i in Q
- p_x^T (user vector): the column corresponding to user x in P^T

Overfitting

$$\min_{\boldsymbol{Q},\boldsymbol{P}} \sum_{(x,i) \text{ known}} (U_{xi} - \boldsymbol{q}_i \boldsymbol{p}_x^T)^2$$

- q_i (item vector): the row corresponding to item i in Q
- p_x^T (user vector): the column corresponding to user x in P^T
- No closed form solution.
- All item vectors and user vectors are parameters to be learned!
- Overfitting: With too much freedom (too many free parameters) the model starts fitting noise in the training data, thus not generalizing well to unseen test data.

Regularization

- Model parameters can be "complicated" where there are sufficient training data
- Model parameters should be "simple" where training data are scarce

$$\min_{\boldsymbol{Q},\boldsymbol{P}} \sum_{(x,i) \text{ known}} (U_{xi} - \boldsymbol{q}_i \boldsymbol{p}_x^T)^2 + \left[c_1 \sum_{x} ||\boldsymbol{p}_x||^2 + c_2 \sum_{i} ||\boldsymbol{q}_i||^2 \right]$$
Original Objective

Regularization Term

 $(c_1 \text{ and } c_2 \text{ are hyperparameters})$

How to understand the Regularization Term?

The Effect of Regularization

The Effect of Regularization

• If the user has rated

hundreds of movies, it

The Effect of Regularization

 If the user has rated only a handful, it is pulled back towards the origin.

Gradient Descent

$$\min_{\mathbf{Q}, \mathbf{P}} J = \sum_{(x, i) \text{ known}} (U_{xi} - \mathbf{q}_i \mathbf{p}_x^T)^2 + \left[c_1 \sum_{x} ||\mathbf{p}_x||^2 + c_2 \sum_{i} ||\mathbf{q}_i||^2 \right]$$

- Step I: Initialize Q and P using SVD (pretend missing ratings are 0)
- Step 2: Gradient descent

•
$$P_{x\phi} = P_{x\phi} - \eta \frac{\partial J}{\partial P_{x\phi}}$$

• $\frac{\partial J}{\partial P_{x\phi}} = \sum_{(x,i) \text{ known}} \left(-2(U_{xi} - \boldsymbol{q}_i \boldsymbol{p}_x^T)Q_{i\phi} + 2c_1 P_{x\phi}\right)$

•
$$Q_{i\phi} = Q_{i\phi} - \eta \frac{\partial J}{\partial Q_{i\phi}}$$

• $\frac{\partial J}{\partial Q_{i\phi}} = \sum_{(x,i) \text{ known}} \left(-2(U_{xi} - \boldsymbol{q}_i \boldsymbol{p}_x^T)P_{x\phi} + 2c_2 Q_{i\phi}\right)$

Learned Item Vectors in the Latent Factor Space

Performance of Various Models

Extending Latent Factor Models to Include Bias

Bias, Again

- Basic Latent Factor Model:
- Latent Factor Model with Bias:
 - μ : overall mean movie rating
 - b_x : rating deviation of user x
 - b_i : rating deviation of item i

$$U_{xi} = \boldsymbol{q}_i \boldsymbol{p}_x^T$$

$$U_{xi} = \mu + b_x + b_i + \boldsymbol{q}_i \boldsymbol{p}_x^T$$

Bias, Again

Latent Factor Model with Bias:

$$U_{xi} = \mu + b_x + b_i + \boldsymbol{q}_i \boldsymbol{p}_x^T$$

- μ : overall mean movie rating
 - E.g., $\mu = 2.7$
- b_x : rating deviation of user x (to be learned)
 - E.g., Bob is a critical reviewer. Based on the training data, his rating will be 0.7 star lower than the mean $\Rightarrow b_x = -0.7$.
- b_i : rating deviation of item i (to be learned)
 - E.g., Star Wars will get a mean rating of 0.5 higher than the average $\Rightarrow b_i = 0.5$
- q_i and p_x : vector of user x and item i in the latent factor space (to be learned)
 - E.g., based on the genre, Bob likes Star Wars $\Rightarrow q_i p_x^T = 0.3$
- $U_{xi} = 2.7 0.7 + 0.5 + 0.3 = 2.8$

Fitting the New Model

$$\min_{\mathbf{Q}, \mathbf{P}, \mathbf{b}_{x}, \mathbf{b}_{i}} J = \sum_{(x, i) \text{ known}} (U_{xi} - (\mu + b_{x} + b_{i} + \mathbf{q}_{i} \mathbf{p}_{x}^{T}))^{2} + \left[c_{1} \sum_{x} ||\mathbf{p}_{x}||^{2} + c_{2} \sum_{i} ||\mathbf{q}_{i}||^{2} + c_{3} \sum_{x} ||b_{x}||^{2} + c_{4} \sum_{i} ||b_{i}||^{2} \right]$$

• Both biases b_x , b_i as well as interactions q_i , p_x are treated as parameters to be learned via gradient descent

•
$$P_{x\phi} = P_{x\phi} - \eta \frac{\partial J}{\partial P_{x\phi}}$$
, $Q_{i\phi} = Q_{i\phi} - \eta \frac{\partial J}{\partial Q_{i\phi}}$
• $b_x = b_x - \eta \frac{\partial J}{\partial b_x}$, $b_i = b_i - \eta \frac{\partial J}{\partial b_i}$

$$b_{x}=b_{x}-\eta \frac{\partial J}{\partial b_{x}}, \qquad b_{i}=b_{i}-\eta \frac{\partial J}{\partial b_{x}}$$

Performance of Various Models

- Which hyperparameter determines the number of parameters?
 - Number of factors

Performance of Various Models

Extended Content: The Netflix Challenge 2006-2009 (will not appear in quizzes or the exam)

Temporal Biases Of Users [Koren, KDD 2009]

- A sudden surge in the average movie rating observed in early 2004.
 - Possible reasons:
 - Improvements in Netflix
 - GUI improvements
 - Meaning of rating changed
- For the rating of a single movie, its age is an important factor.
 - Users prefer the newest movies
 - For not that new movies, people believe even older movies are just inherently better

Temporal Biases and Factors

- Latent Factor Model with Constant Bias: $U_{xi} = \mu + b_x + b_i + q_i p_x^T$
- Latent Factor Model with Temporal Bias: $U_{xi} = \mu + b_x(t) + b_i(t) + q_i p_x^T$
 - Make parameters b_x and b_i to depend on time
 - Parameterize time-dependence by linear trends
 - Each bin corresponds to 10 consecutive weeks

•
$$b_i(t) = b_i + b_{i,Bin(t)}$$

- One can further add temporal dependence to user/item vectors
 - $p_x(t)$: user preference vector on day t

Adding Temporal Effects

Performance of Various Models

Global average: 1.1296

User average: 1.0651

Movie average: 1.0533

Netflix: 0.9514

Basic Collaborative Filtering: 0.94

CF + Bias + Learned Weights: 0.91

Latent Factor Model: 0.90

Latent Factor Model + Bias: 0.89

Latent Factor Model + Bias + Time: 0.876

Still no prize!

Getting desperate.

Grand Prize: 0.8563

BellKor Recommender System: Winner of the Netflix Challenge

June 26, 2009 RMSE = 0.8558

A "Kitchen Sink" Approach

- For a research project, this is a very bad idea (since you don't know which part works or why).
- To achieve a certain level of model performance (and win a prize), this might be an unavoidable path to take.

BellKor Recommender System: Rough Idea

- Multi-scale modeling of the data: Combine top level, "regional" modeling of the data, with a refined, local view.
- Global:
 - Overall deviations of users/movies
- Matrix Factorization:
 - Addressing "regional" effects
- Collaborative Filtering:
 - Extract local patterns

Next Lecture

- Finish the story of the Netflix Prize
- Quiz 2!
 - All policies are the same as Quiz I (number of questions, time limit, grading, etc.)
 - Scope:
 - Lecture 8 (Statistical Significance Test in IR Evaluation)
 - Lectures 9 & 10 (Learning to Rank)
 - Lecture II (Collaborative Filtering)
 - Lecture 12 (Matrix Factorization)
 - Homework I

Thank You!

Course Website: https://yuzhang-teaching.github.io/CSCE670-F25.html