
CSCE 670 - Information Storage and Retrieval

Lecture 2: Boolean Retrieval

Yu Zhang
yuzhang@tamu.edu

August 28, 2025

1

Course Website: https://yuzhang-teaching.github.io/CSCE670-F25.html

Adapted from the slides by Prof. James Caverlee

mailto:yuzhang@tamu.edu

We are opening a record store!

2

• Over the course of the semester, we will progressively build up the search and
recommendation capabilities of our store.

• This + next few weeks: Focus on search basics
• Then: Focus on recommendation basics
• Later: Revisit both search and recommendation via advanced topics (e.g., LLMs)

CDs / VinylCustomers

This + Next Few Weeks: Help Users Search our Store

3

CDs / VinylCustomers

• Information need
• “I want Taylor Swift's latest album.”

• Query
• “Taylor Swift's latest album”
• “Taylor Swift album 2025”
• …

• Documents
• A pool of candidates (e.g., CDs)
• Some candidates may satisfy the information need.
• Each candidate is associated with some text information.

• “Artist: Taylor Swift; Lyrics: Meet me at midnight, Staring at the ceiling with you …”

Basic Concepts

4

• Query Representation
• If we want to design an automated algorithm for search, we need a way to represent

the query that a computer can understand.
• [0, 1, 1, 0, …]
• [0.255, -1.342, …]

• Document Representation
• We need to use a similar way to represent each “document” (i.e., candidate).

• Relevance Function
• How can we decide which “document” can satisfy the information need?
• Relevance(Query, Document1) = 0.8
• Relevance(Query, Document2) = 0.5
• …

Basic Concepts

5

Key Challenges Motivating Much of this Course

6

• How do we represent our queries and documents?
• What is our “representation function”?

• What is our relevance function?

• How do we know if we are doing a good job?

Today: Simplifying Assumptions

7

• Our store front-page only supports Boolean keyword queries.
• “karma”
• “love OR song”
• “taylor AND swift”
• “taylor AND (NOT swift)”
• …

• Based on these queries, we return a list of matching albums.

query: taylor AND swift

We return a set of matching
albums. (No rank order!)

Example Album

8

• Artist: Taylor Swift
• Album Title: Midnights
• Year: 2022
• Track Listing: Lavender Haze, Maroon, Anti-

Hero, …
• Lyrics: Meet me at midnight, Staring at the

ceiling with you, Oh, you don't ever say too …

What do our users want to search for?

9

• Another example where each “document” has multiple fields: Course Explorer

• What parts of an album do we index?
• How to index these parts?

• Everything in one index?
• Some parts in one index?
• Each facet in its own separate index?

One More Simplifying Assumption

10

• Record store front-page only supports Boolean keyword queries over song lyrics.

• Artist: Taylor Swift
• Album Title: Midnights
• Year: 2022
• Track Listing: Lavender Haze, Maroon, Anti-

Hero, …
• Lyrics: Meet me at midnight, Staring at the

ceiling with you, Oh, you don't ever say too …

A Simple (but not Good) Boolean Retrieval Algorithm

11

• Query: midnight AND staring

• Algorithm Pseudo Code:
results = []
For CD in CDs:

If “midnight” in CD.lyrics and “staring” in CD.lyrics:
results.append(CD)

return results

A Simple (but not Good) Boolean Retrieval Algorithm

12

• Query: believe OR (NOT love)

• Algorithm Pseudo Code:
results = []
For CD in CDs:

If “believe” in CD.lyrics or “love” not in CD.lyrics:
results.append(CD)

return results

• What if a new CD arrives in our store?
CDs.append(new_CD)

Problems?

13

• For each query, we need to scan all the documents.
• If there are 𝑀𝑀 documents in total, and each document has 𝑁𝑁 words on average, the

time complexity will be 𝑂𝑂(𝑀𝑀𝑁𝑁).

• Scanning 48 billion words for each query!
• If you had to wait several minutes every time to get the paper you are looking for,

would you still use this academic search engine?

• 240,000,000+ papers on the
Web by the end of 2019 [1].

• Let's assume that the title
and abstract of each paper
contain about 200 words.

[1] Microsoft Academic Graph: When Experts are Not Enough. Quantitative Science Studies 2020.

Inverted Index: A More Efficient Solution

14

• Document 1 (d1): “any choose love”
• Document 2 (d2): “zebra any love”
• …

Vocabulary

any

believe

choose

love

midnight

starring

zebra

Inverted Index: A More Efficient Solution

15

• Document 1 (d1): “any choose love”
• Document 2 (d2): “zebra any love”
• …

Vocabulary

any → d1

believe

choose → d1

love → d1

midnight

starring

zebra

Inverted Index: A More Efficient Solution

16

• Document 1 (d1): “any choose love”
• Document 2 (d2): “zebra any love”
• …

Vocabulary

any → d1 → d2

believe

choose → d1

love → d1 → d2

midnight

starring

zebra → d2

Inverted Index: A More Efficient Solution

17

• Query: “any”
• {d1, d2, d5}

• Query: “any AND zebra”
• {d1, d2, d5} ∩ {d2, d8} = {d2}

Vocabulary

any → d1 → d2 → d5

believe → d4

choose → d1 → d5 → d6 → d10

love → d1 → d2 → d8

midnight → d7 → d9

starring → d7 → d9

zebra → d2 → d8

Inverted Index: A More Efficient Solution

18

• Query: “believe OR midnight”
• {d4} ∪ {d7, d9} = {d4, d7, d9}

• Query: “any AND (NOT zebra)”
• {d1, d2, d5} − {d2, d8} = {d1, d5}

Vocabulary

any → d1 → d2 → d5

believe → d4

choose → d1 → d5 → d6 → d10

love → d1 → d2 → d8

midnight → d7 → d9

starring → d7 → d9

zebra → d2 → d8

Questions?

19

Vocabulary

any → d1 → d2 → d5

believe → d4

choose → d1 → d5 → d6 → d10

love → d1 → d2 → d8

…

Inverted Index: A More Efficient Solution

20

• What if a new CD (d1000) arrives in our store?
• Scan its lyrics and update our inverted index
• Move the scanning process into index construction, so it does not take up time

during the on-the-fly processing of user queries.
• Moreover, the data only needs to be scanned once, instead of being scanned for

every query.

Inverted Index: A More Efficient Solution

21

• What is the time complexity of the Boolean retrieval process now?
• Number of words in the query: usually less than 20
• × Time to access the linked list of a word: 𝑂𝑂(1)
• + Set operations based on these linked lists: proportional to the total length of

these linked lists (i.e., the total number of documents containing these words)
• For most words, only a small fraction of documents contain them.
• The remaining words (i.e., stop words) appear in many documents and are

typically considered uninformative, so they are usually ignored.

Summary: Boolean Retrieval

22

• Advantages
• Precise, if you know the right strategies (e.g., how to iteratively refine your queries,

use of boolean operators, …)
• Typically, efficient in practice

• Disadvantages
• Users must understand Boolean logic!
• Boolean logic does not capture language richness.
• Feast or famine in results: often get 0 results or 1000s
• Result sets are unordered.
• What about partial matches? E.g., a document does not exactly match the query but

it is “close”?

Can we improve the index?

23

• To support phrase queries?
• “taylor swift”, “670 homework solution”

• To support proximity queries?
• “taylor NEAR:2 swift”, “670 NEAR:5 solution”

• To support wildcard queries?
• “tayl*”, “*ift”

Phrase Queries

24

• “taylor swift”, “670 homework solution”
• Why might we like to support phrase queries?

• “taylor made a swift decision to pivot the project after noticing the early results.”
• “the professor teaches both 670 and 698, but only the 698 homework solution was shared

on the course website.”

Phrase Queries: One Idea

25

• Bigram index: Index every consecutive pair of terms in the text as a phrase
• “taylor made a swift decision …”

Vocabulary

taylor → …

made → …

…

taylor made → …

made a → …

a swift → …

swift decision → …

…

• What if the query has three words?
• Trigram index: Index every

consecutive span of three terms in
the text as a phrase.

• What if the query has four words?
• …

• Problems with this strategy?

Instead: Positional Index

26

• Store the position in the index!
• Document 1 (d1): “any choose love”
• Document 2 (d2): “zebra any love any zebra”

Vocabulary

any

believe

choose

love

midnight

starring

zebra

Instead: Positional Index

27

• Store the position in the index!
• Document 1 (d1): “any choose love”
• Document 2 (d2): “zebra any love any zebra”

Vocabulary

any → d1 (0)

believe

choose → d1 (1)

love → d1 (2)

midnight

starring

zebra

Instead: Positional Index

28

• Store the position in the index!
• Document 1 (d1): “any choose love”
• Document 2 (d2): “zebra any love any zebra”

Vocabulary

any → d1 (0) → d2 (1, 3)

believe

choose → d1 (1)

love → d1 (2) → d2 (2)

midnight

starring

zebra → d2 (0, 4)

Positional Index: Querying

29

• Query 1: “any love” (phrase)

• Constraint 1: “any” and “love” should appear in the same document.
• Constraint 2: In this document, position(“love”) = position(“any”) + 1

• Query 2: “love any zebra” (phrase)

Vocabulary

any → d1 (0) → d2 (1, 3)

love → d1 (2) → d2 (2)

Vocabulary

any → d1 (0) → d2 (1, 3)

love → d1 (2) → d2 (2)

zebra → d2 (0, 4)

Proximity Queries

30

• “taylor NEAR:2 swift”, “670 NEAR:5 solution”
• “NEAR:k” (or “/k”): within k words of (on either side)
• Why might we like to support proximity queries?

• “Taylor Alison Swift (born December 13, 1989) is an American singer-songwriter. Known for
her autobiographical songwriting, artistic versatility, and cultural impact …”

• Positional index still works!
• Query: “zebra NEAR:2 love”

Vocabulary

love → d1 (2) → d2 (2)

zebra → d2 (0, 4)

• Constraint 1: “zebra” and “love”
should appear in the same
document.

• Constraint 2: In this document,
|position(“zebra”) - position(“love”)|
≤ 2.

Wildcard Queries

31

• “mid*”
• Find all documents containing any word that begins with “mid”

• “midnight”, “midnights”, “midnoon”, “midas”, …

Vocabulary

any → d1 → d2 → d5

believe → d4

…

midas → d1 → d5 → d6 → d10

midnight → d1 → d2 → d8

midnoon → d7 → d9

mine → d7 → d9

…

zebra → d2 → d8

Wildcard Queries: One Idea

32

• “mid*”
• Suppose we have a binary search tree over our dictionary

• Find all words in range: “mid” <= words < “mie”

mid

mie

But we have harder cases

33

• What about wildcards at the beginning of a word?
• “*ift”
• Find all documents containing any word that ends with “ift”

• “swift”, “lift”, “rift”, …

• What about wildcards at any point of a word?
• “ta*r”: “taylor”, “tater”, “tailor”, …
• “m*ight”: “midnight”, “moonlight”, …

• Ideas?

Permuterm Index

34

• Use a special end-of-word token, e.g., “$”
• “taylor$”

• Rotate every term:
• “taylor$”, “aylor$t”, “ylor$ta”, “lor$tay”, “or$tayl”, “r$taylo”, “$taylor”

• If we have the query
• “ta*r”

• Rotate the query, so that the “*” is at the end!
• “r$ta*”

• Look up in the rotated dictionary. “taylor”, “tater”, “tailor” should all be near each other:
• “r$taylor”, “r$tater”, “r$tailor”

Summary

35

• To support phrase queries?
• “taylor swift”, “670 homework solution”
• Positional index

• To support proximity queries?
• “taylor NEAR:2 swift”, “670 NEAR:5 solution”
• Positional index

• To support wildcard queries?
• “tayl*”, “*ift”
• Permuterm Index

Extended Content
(will not appear in quizzes or the exam)

36

What should be in the index?

37

• What are the valid tokens to go in our dictionary?

• Input: a bunch of text
• E.g., “Welcome to class 670ers!”

• Output: valid tokens
• Approach 1: “Welcome”, “to”, “class”, “670ers!”
• Approach 2: “welcome”, “to”, “class”, “670ers”, “!”
• Approach 3: “wel”, “elc”, “lco”, “com”, “ome”, “to”, “cla”, …

• Critical step in determining what our users can search for.
• If a token is not in our index, then our user cannot search for it!

Typical Issues in Tokenization

38

• Punctuation
• “pre-trained” → “pre-trained” or even “pretrained” (better than “pre”, “trained”)
• “U.S.A.” → “U.S.A.” or even “USA” (better than “U”, “S”, “A”)
• “C.A.T.” → “C.A.T.” (better than “cat”)
• “A&M” → “A&M” (better than “AM” or “A”, “M”)

• Case
• “PageRank”, “Pagerank”, “PAGERANK” → “pagerank”
• “Apple”, “Windows” → ? (depending on the context)

• Domain/Task
• “F = ma” → “F = ma” (better than “F”, “=”, “ma”)
• “2%-4%” → “2%”, “-”, “4%”
• “CaO + CO2 = CaCO3” → ? (depending on your task: retrieving the reactants vs. retrieving the

equation)

Stemming

39

• The same word can be used in different forms.
• “organize”, “organized”, “organizes”, “organizing”

• There are families of derivationally related words with similar meanings.
• “democracy”, “democratic”, “democratization”

• When you search one of these words, you may also want documents containing other
words in the set.

• Stemming: Reducing inflectional forms and sometimes derivationally related forms of a
word to a common base form

Porter’s Algorithm

40

• Stemming: Reducing inflectional forms and sometimes derivationally related forms of a
word to a common base form

• Porter’s Algorithm: 5 phases of word reduction applied sequentially
• Phase 1

• For more information: http://www.tartarus.org/martin/PorterStemmer/

http://www.tartarus.org/martin/PorterStemmer/

Examples of Stemming

41

Spelling Errors

42

• Users make spelling mistakes all the time.
• How do we know that?

• “britent spears” → “britney spears”

Spelling Correction

43

• Based on edit distance
• Based on everyone's search logs

https://archive.google/jobs/britney.html

https://archive.google/jobs/britney.html

Thank You!

44

Course Website: https://yuzhang-teaching.github.io/CSCE670-F25.html

	CSCE 670 - Information Storage and Retrieval��Lecture 2: 	Boolean Retrieval
	We are opening a record store!
	This + Next Few Weeks: Help Users Search our Store
	Basic Concepts
	Basic Concepts
	Key Challenges Motivating Much of this Course
	Today: Simplifying Assumptions
	Example Album
	What do our users want to search for?
	One More Simplifying Assumption
	A Simple (but not Good) Boolean Retrieval Algorithm
	A Simple (but not Good) Boolean Retrieval Algorithm
	Problems?
	Inverted Index: A More Efficient Solution
	Inverted Index: A More Efficient Solution
	Inverted Index: A More Efficient Solution
	Inverted Index: A More Efficient Solution
	Inverted Index: A More Efficient Solution
	Questions?
	Inverted Index: A More Efficient Solution
	Inverted Index: A More Efficient Solution
	Summary: Boolean Retrieval
	Can we improve the index?
	Phrase Queries
	Phrase Queries: One Idea
	Instead: Positional Index
	Instead: Positional Index
	Instead: Positional Index
	Positional Index: Querying
	Proximity Queries
	Wildcard Queries
	Wildcard Queries: One Idea
	But we have harder cases
	Permuterm Index
	Summary
	Extended Content�(will not appear in quizzes or the exam)
	What should be in the index?
	Typical Issues in Tokenization
	Stemming
	Porter’s Algorithm
	Examples of Stemming
	Spelling Errors
	Spelling Correction
	Thank You!

