CSCE 670 - Information Storage and Retrieval

Lecture 2: Boolean Retrieval

Yu Zhang
yuzhang@tamu.edu
August 28, 2025

Course Website: https://yuzhang-teaching.github.io/CSCE670-F25.html

Adapted from the slides by Prof. James Caverlee 1

mailto:yuzhang@tamu.edu

We are opening a record store!

Customers

CDs /Vinyl

* Over the course of the semester, we will progressively build up the search and
recommendation capabilities of our store.

* This + next few weeks: Focus on search basics
* Then: Focus on recommendation basics

* Later: Revisit both search and recommendation via advanced topics (e.g., LLMs)

This + Next Few Weeks: Help Users Search our Store

Customers CDs /Vinyl

£% ° 88
22 00

Basic Concepts

* Information need

* “l want Taylor Swift's latest album.”
* Query

* “Taylor Swift's latest album”

* “laylor Swift album 2025”

* Documents
* A pool of candidates (e.g., CDs)
* Some candidates may satisfy the information need.
* Each candidate is associated with some text information.

 “Artist: Taylor Swift; Lyrics: Meet me at midnight, Staring at the ceiling with you ...”

Basic Concepts

* Query Representation

* If we want to design an automated algorithm for search, we need a way to represent
the query that a computer can understand.

[0, 1,1,0,...]

* [0.255,-1.342, ...]
* Document Representation

* We need to use a similar way to represent each “document” (i.e., candidate).
* Relevance Function

* How can we decide which “document” can satisfy the information need!?

* Relevance(Query, Documentl) = 0.8

* Relevance(Query, Document2) = 0.5

Key Challenges Motivating Much of this Course

* How do we represent our queries and documents?

* What is our “representation function?
* What is our relevance function?

* How do we know if we are doing a good job?

Today: Simplifying Assumptions

* Our store front-page only supports Boolean keyword queries.
* “karma”
* “love OR song”
* “taylor AND swift”
* “taylor AND (NOT swift)”

* Based on these queries, we return a list of matching albums.

.. (query: taylor AND swift :’ @ @ @

We return a set of matching
albums. (No rank order!)

Example Album

Artist: Taylor Swift
Album Title: Midnights
Year: 2022

Track Listing: Lavender Haze, Maroon, Anti-
Hero, ...

Midnights

Lyrics: Meet me at midnight, Staring at the
ceiling with you, Oh, you don't ever say too ...

Levender Haze
Maroon

Anli-Hero

Snow On The Baach
Yiorua e Oy ioar O, Kid
Midnight Readn
Chpestion.., 7
Vigllante She
Eajoweted
Labyrinth

K i

K e
Swieal Mothing
Mastermnd

What do our users want to search for?

* Another example where each “document” has multiple fields: Course Explorer

= {S:}F'“:]hus = | 5.V = | Crse = | Sect = | Hrs = | Instructor(s)

4 s v Il v

PROGRAMMING | 45405 CSCE 110 500 4 Ki Hwan K. Yum (P) M B R s |12:40 PM-01:30 PM Type: Lecture
Syllabus Building: ZACH Room: 350 Date: 08/25/2025 -
12/16/2025

SulM) 4 F | S5 |02:35 PM-03:25 PM Type: Laboratory
Building: ZACH Room: 596 Date: 08/25/2025 -

12/16/2025

* What parts of an album do we index?
* How to index these parts?

* Everything in one index!?

* Some parts in one index?

* Each facet in its own separate index!

One More Simplifying Assumption

* Record store front-page only supports Boolean keyword queries over song lyrics.

Midnights

* Lyrics: Meet me at midnight, Staring at the
ceiling with you, Oh, you don't ever say too ...

Viglilante Sha

10

A Simple (but not Good) Boolean Retrieval Algorithm

* Query: midnight AND staring

* Algorithm Pseudo Code:
results =[]
For CD in CD:s:
If “midnight” in CD.lyrics and “staring” in CD.lyrics:
results.append(CD)

return results

11

A Simple (but not Good) Boolean Retrieval Algorithm

* Query: believe OR (NOT love)

* Algorithm Pseudo Code:
results =[]
For CD in CD:s:
If “believe” in CD.lyrics or “love” not in CD.lyrics:
results.append(CD)

return results

* What if a new CD arrives in our store!
CDs.append(new_CD)

12

Problems?

* For each query, we need to scan all the documents.

* If there are M documents in total, and each document has N words on average, the
time complexity will be O(MN).

* 240,000,000+ papers on the

GO gle Scho|ar Web by the end of 2019 [I].

e Let's assume that the title
‘ | n and abstract of each paper
contain about 200 words.

* Scanning 48 billion words for each query!

* If you had to wait several minutes every time to get the paper you are looking for,
would you still use this academic search engine?

[] Microsoft Academic Graph:When Experts are Not Enough. Quantitative Science Studies 2020.

13

Inverted Index: A More Efficient Solution

* Document | (dl):“any choose love”

* Document 2 (d2):“zebra any love”

Vocabulary
any
believe
choose
love
midnight
starring

zebra

14

Inverted Index: A More Efficient Solution

* Document | (dl):“any choose love”

* Document 2 (d2):“zebra any love”

Vocabulary
any - dl
believe
choose - dl
love - dl
midnight
starring

zebra

Inverted Index: A More Efficient Solution

* Document | (dl):“any choose love”

* Document 2 (d2):“zebra any love”

Vocabulary
any - dl - d2
believe
choose - dl
love - dl - d2
midnight
starring
zebra - d2

16

Inverted Index: A More Efficient Solution

Vocabulary
any - dl - d2 -
believe - d4
choose - dl - d5 -
love - dl - d2 -
midnight - d7 - d9
starring - d7 - d9
zebra - d2 - d8
* Query:“any”
» {dl, d2, d5}

* Query:“any AND zebra”
 {dl,d2,d5} n {d2, d8} = {d2}

d5

dé
d8

dl0

17

Inverted Index: A More Efficient Solution

Vocabulary

any - dl -

believe - d4
choose - dl -
love - dl -
midnight - d7 -
starring - d7 -
zebra - d2 -

* Query:“believe OR midnight”
 {d4} U {d7, d9} = {d4, d7, d9}

* Query:“any AND (NOT zebra)”
 {dl,d2,d5} — {d2,d8} = {dI, d5}

d2

d5
d2
d9
d9
d8

d5

dé
d8

dl0

18

Questions!

19

Inverted Index: A More Efficient Solution

Vocabulary
any
believe

choose

Il 1]

love

dl - d2 - d5
d4

dl - d5 - dé
dl - d2 - d8

* What if a new CD (d1000) arrives in our store!

* Scan its lyrics and update our inverted index

dl0

* Move the scanning process into index construction, so it does not take up time
during the on-the-fly processing of user queries.

* Moreover, the data only needs to be scanned once, instead of being scanned for

every query.

Inverted Index: A More Efficient Solution

* What is the time complexity of the Boolean retrieval process now?
* Number of words in the query: usually less than 20
* X Time to access the linked list of a word: O(1)

* + Set operations based on these linked lists: proportional to the total length of
these linked lists (i.e., the total number of documents containing these words)

* For most words, only a small fraction of documents contain them.

* The remaining words (i.e., stop words) appear in many documents and are
typically considered uninformative, so they are usually ignored.

GO gle For most words, only a small fraction of documents contain them.

Efficient search of a large set of documents to find ...

May 18, 2022 — Efficient search of a large set of documents to find documents that only contain a

21

Summary: Boolean Retrieval

* Advantages

* Precise, if you know the right strategies (e.g., how to iteratively refine your queries,
use of boolean operators, ...)

* Typically, efficient in practice

* Disadvantages

* Users must understand Boolean logic!

Boolean logic does not capture language richness.

Feast or famine in results: often get O results or 1000s

Result sets are unordered.

What about partial matches? E.g.,a document does not exactly match the query but
it is “close™?

Can we improve the index!?
* To support phrase queries!?
* “taylor swift”," 670 homework solution”

* To support proximity queries?
* “taylor NEAR:2 swift”,“670 NEAR:5 solution”

* To support wildcard queries!?
° “tayl*”"‘*if.t”

23

Phrase Queries

* “taylor swift”,"“670 homework solution”
* Why might we like to support phrase queries?
* “taylor made a swift decision to pivot the project after noticing the early results.”

* “the professor teaches both 670 and 698, but only the 698 homework solution was shared
on the course website.”

24

Phrase Queries: One ldea

* Bigram index: Index every consecutive pair of terms in the text as a phrase

* “taylor made a swift decision ...”

Vocabulary
taylor

made

taylor made
made a
a swift

swift decision

\)

\

VAR

* What if the query has three words?

* Trigram index: Index every
consecutive span of three terms in
the text as a phrase.

* What if the query has four words!?

* Problems with this strategy?

25

Instead: Positional Index

* Store the position in the index!
* Document | (dl):"“any choose love”

* Document 2 (d2):“zebra any love any zebra”

Vocabulary
any
believe
choose
love
midnight
starring

zebra

26

Instead: Positional Index

* Store the position in the index!
* Document | (dl):*“any choose love”

* Document 2 (d2):“zebra any love any zebra”

Vocabulary
any - dl (0)
believe
choose - dl (1)
love - dl (2)
midnight
starring

zebra

Instead: Positional Index

* Store the position in the index!
* Document | (dl):"“any choose love”

* Document 2 (d2):“zebra any love any zebra”

Vocabulary
any - dl (0) — d2 (1, 3)
believe
choose - dl (1)
love — dl (2) — d2 (2)
midnight
starring
zebra - d2 (0,4)

28

Positional Index: Querying

* Query |:“any love” (phrase)

Vocabulary
any - dl (0) - d2 (1, 3)
love - dl (2) - d2 (2)

* Constraint |:*“any” and “love” should appear in the same document.

* Constraint 2: In this document, position(“love”) = position(“any”) + |

* Query 2:“love any zebra” (phrase)

Vocabulary
any - dl (0) - d2 (1, 3)
love - dl (2) - d2 (2)
zebra - d2 (0,4)

29

Proximity Queries

“taylor NEAR:2 swift”,"“670 NEAR:5 solution”
“NEAR:K” (or “/k”): within k words of (on either side)
Why might we like to support proximity queries?

* “Iaylor Alison Swift (born December |3, 1989) is an American singer-songwriter. Known for
her autobiographical songwriting, artistic versatility, and cultural impact ...”

Positional index still works!

* Query:“zebra NEAR:2 love” * Constraint |:“zebra” and “love”
should appear in the same
Vocabulary document.
love > dl (2) N d2 (2)

e Constraint 2: In this document,
|position(““zebra”) - position(“‘love”)|
< 2.

zebra - d2 (0, 4)

Wildcard Queries

° “mid*”

* Find all documents containing any word that begins with “mid”

9 ¢¢ Y ¢¢ ’ ¢

* “midnight”,“midnights”,“midnoon”, “midas”, ...

31

Wildcard Queries: One Idea

S “mid*”
* Suppose we have a binary search tree over our dictionary

* Find all words in range:“mid” <= words < “mie”

Vocabulary
any - dl - d2 - d5
believe - d4
mid =-=->
- dl - d5 — dé
- dl - d2 — d8
_ - d7 - d9
mie ==
mine - d7 — d9
zebra - d2 - d8

dlo

32

But we have harder cases

* What about wildcards at the beginning of a word?
. “Kif
* Find all documents containing any word that ends with “ift”
o “swift”,“lift”, “rift”, ...

* What about wildcards at any point of a word!?

), ¢¢ 9 €¢ 9 ¢¢

o “ta’r’: taylor ,“tater”, “tailor”, ...

’” ¢

* “m¥*ight”: “midnight”, “moonlight”, ...

* |deas?

Permuterm Index

Use a special end-of-word token, e.g.,“$”
* “taylor$”

Rotate every term:

Y ¢¢ Y ¢¢) €¢

* “taylor$”,“aylor$t”,“ylor$ta”,“lor$tay”, “or$tayl”, “r$taylo”, “$taylor”

If we have the query
° “ta*r”
Rotate the query, so that the “*” is at the end!

° “r$ta>k”

) ¢¢ 9 ¢¢

Look up in the rotated dictionary. “taylor”, “tater”,“tailor” should all be near each other:

) ¢¢) ¢

* “r$taylor’,“r$tater”,“r$tailor”’

34

Summary

* To support phrase queries!?
* “taylor swift”,"“670 homework solution”

e Positional index

* To support proximity queries?
* “taylor NEAR:2 swift”’,“670 NEAR:5 solution”

* Positional index

* To support wildcard queries!?
° “tayl*”"‘*if‘t”

e Permuterm Index

35

Extended Content
(will not appear in quizzes or the exam)

36

What should be in the index?

What are the valid tokens to go in our dictionary?

Input: a bunch of text

* E.g.,"“Welcome to class 670ers!”

Output: valid tokens

) €6

* Approach [:“Welcome”, “to”, “class”, “670ers!”

)

* Approach 2:“welcome”, “to”, “class”, “6 70ers”, “I”’

) ¢) ¢ »» “t) €€ »»

* Approach 3:“wel”, “elc”, “lco”, “com”, “ome”, “to”, “cla”, ...

Critical step in determining what our users can search for.

e |f a token is not in our index, then our user cannot search for it!

Typical Issues in Tokenization

* Punctuation
* “pre-trained’ — “pre-trained” or even “pretrained”’ (better than “pre”,“trained”)
 “USA” ->“US.A” or even “USA” (better than “U”,“S”,“A”)
 “CAT” ->“CAT” (better than “cat”)
¢ “A&M” — “A&M” (better than “AM” or “A”,“M”)
* Case
* “PageRank”,“Pagerank”, “PAGERANK” — “pagerank”
* “Apple”,Windows” — ! (depending on the context)
* Domain/Task
* “F=ma” - “F =ma” (better than “F’,"=",
o “2%-4%" —“2%","-","“4%”
* “Ca0 + CO2 = CaCO3” — ? (depending on your task: retrieving the reactants vs. retrieving the
equation)

(3

ma”)

Stemming

The same word can be used in different forms.

’” ¢ " ¢

* “organize”,organized”, “organizes”, “organizing”

There are families of derivationally related words with similar meanings.

* “democracy”,“democratic”’, “democratization”

When you search one of these words, you may also want documents containing other
words in the set.

Stemming: Reducing inflectional forms and sometimes derivationally related forms of a
word to a common base form

Porter’s Algorithm

e Stemming: Reducing inflectional forms and sometimes derivationally related forms of a
word to a common base form

* Porter’s Algorithm: 5 phases of word reduction applied sequentially

* Phase |
Rule Example
SSES — SS caresses — caress
IES — 1 ponies — poni
SS — SS caress — caress
S — cats — cat

* For more information: http://www.tartarus.org/martin/PorterStemmer/

40

http://www.tartarus.org/martin/PorterStemmer/

Examples of Stemming

Sample text: Such an analysis can reveal features that are not easily visible
from the variations in the individual genes and can lead to a picture of
expression that is more biologically transparent and accessible to
interpretation

Lovins stemmer: such an analys can reve featur that ar not eas vis from th
vari in th individu gen and can lead to a pictur of expres that is mor
biolog transpar and acces to interpres

Porter stemmer: such an analysi can reveal featur that ar not easili visibl
from the variat in the individu gene and can lead to a pictur of express
that is more biolog transpar and access to interpret

Paice stemmer: such an analys can rev feat that are not easy vis from the
vary in the individ gen and can lead to a pict of express that is mor
biolog transp and access to interpret

41

Spelling Errors

* Users make spelling mistakes all the time.
* How do we know that?
* “britent spears” — “britney spears”

GO gle britent spears

AlMode All News |Images Videos

These are results for britney spears
Search instead for britent spears

Short videos

Shopping

More ~

42

488941
40134
36315
24342

7331
6633
2696
1887
1635
1479
1479
1338
1211
1096
991
991
811
811
664
664
664

Spelling Correction

* Based on edit distance

* Based on everyone's search logs

britney spears
brittany spears
brittney spears
britany spears
britny spears

briteny spears
britteny spears
briney spears

brittny spears
brintey spears
britanny spears
britiny spears
britnet spears
britiney spears
britaney spears
britnay spears
brithney spears
brtiney spears
birtney spears
brintney spears
briteney spears

29
29
29
29
26
26
26
26
26
26
26
26
24
24
24
24
24
24
24
24
24

britent spears
brittnany spears
britttany spears
btiney spears
birttney spears
breitney spears
brinity spears
britenay spears
britneyt spears
brittan spears
brittne spears
btittany spears
beitney spears
birteny spears
brightney spears
brintiny spears
britanty spears
britenny spears
britini spears
britnwy spears
brittni spears

https://archive.google/jobs/britney.html

CO CO 0O COCO 0O COCOCO\WIWWWWWWWLWLWWW

brinttany spears
britanay spears
britinany spears
britn spears
britnew spears
britneyn spears
britrney spears
brtiny spears
brtittney spears
brtny spears
brytny spears
rbitney spears
birtiny spears
bithney spears
brattany spears
breitny spears
breteny spears
brightny spears
brintay spears
brinttey spears
briotney spears

G TIE - T - = R R R Uy B o Wy B W BV BV RV Ry |

brney spears
broitney spears
brotny spears
bruteny spears
btiyney spears
btrittney spears
gritney spears
spritney spears
bittny spears
bnritney spears
brandy spears
brbritney spears
breatiny spears
breetney spears
bretiney spears
brfitney spears
briattany spears
brieteny spears
briety spears
briitny spears
briittany spears

Wl g bl g gl w w

britiy spears
britmeny spears
britneeey spears
britnehy spears
britnely spears
britnesy spears
britnetty spears
britnex spears
britneyxxx spears
britnity spears
britntey spears
britnyey spears
britterny spears
brittneey spears
brittnney spears
brittnyey spears
brityen spears
briytney spears
brltney spears
broteny spears
brtaney spears

R ST T ST NS N I NS T NS S G T ST (S S I LS ST ST ST S S

brirreny spears
brirtany spears
brirttany spears
brirttney spears
britain spears

britane spears

britaneny spears
britania spears
britann spears

britanna spears
britannie spears
britannt spears
britannu spears
britanyl spears
britanyt spears
briteeny spears
britenany spears
britenet spears
briteniy spears
britenys spears
britianey spears

43

https://archive.google/jobs/britney.html

Thank You!

Course Website: https://yuzhang-teaching.github.io/CSCE670-F25.html

a4

	CSCE 670 - Information Storage and Retrieval��Lecture 2: 	Boolean Retrieval
	We are opening a record store!
	This + Next Few Weeks: Help Users Search our Store
	Basic Concepts
	Basic Concepts
	Key Challenges Motivating Much of this Course
	Today: Simplifying Assumptions
	Example Album
	What do our users want to search for?
	One More Simplifying Assumption
	A Simple (but not Good) Boolean Retrieval Algorithm
	A Simple (but not Good) Boolean Retrieval Algorithm
	Problems?
	Inverted Index: A More Efficient Solution
	Inverted Index: A More Efficient Solution
	Inverted Index: A More Efficient Solution
	Inverted Index: A More Efficient Solution
	Inverted Index: A More Efficient Solution
	Questions?
	Inverted Index: A More Efficient Solution
	Inverted Index: A More Efficient Solution
	Summary: Boolean Retrieval
	Can we improve the index?
	Phrase Queries
	Phrase Queries: One Idea
	Instead: Positional Index
	Instead: Positional Index
	Instead: Positional Index
	Positional Index: Querying
	Proximity Queries
	Wildcard Queries
	Wildcard Queries: One Idea
	But we have harder cases
	Permuterm Index
	Summary
	Extended Content�(will not appear in quizzes or the exam)
	What should be in the index?
	Typical Issues in Tokenization
	Stemming
	Porter’s Algorithm
	Examples of Stemming
	Spelling Errors
	Spelling Correction
	Thank You!

