

CSCE 670 - Information Storage and Retrieval

Lecture 5: Link Analysis (PageRank)

Yu Zhang

yuzhang@tamu.edu

September 9, 2025

Course Website: https://yuzhang-teaching.github.io/CSCE670-F25.html

Recap: BM25

BM25
$$(q, d) = \sum_{t \in q} IDF(t) \cdot \frac{TF(t, d) \cdot (k_1 + 1)}{TF(t, d) + k_1(1 - b + b \cdot \frac{|d|}{avgdl})}$$

- k_1 controls term frequency scaling
 - $k_1 = 0$: binary model
 - k_1 very large: raw term frequency
- b controls document length normalization
 - b = 0: no document length normalization
 - b = 1: relative frequency (full document length normalization)
- Typically, k_1 is set between 1.2 and 2; b is set around 0.75
- |d| is the length of d (in words); avgdl = average document length (in words)

Our Plan: Ranking

- Why is ranking important?
- What factors impact ranking?
- Two foundational text-based approaches
 - **TF-IDF**
 - MBM25
- Two foundational link-based approaches
 - PageRank
 - HITS
- Machine-learned ranking ("learning to rank")

Recap: What factors impact ranking?

- Query: "TAMU 2025 Fall Break"
- Document I: https://registrar.tamu.edu/academic-calendar/fall-2025

- Document 2:A social media post written by an account with 10 followers mentioning the time of TAMU 2025 Fall Break
- Document I should be ranked higher than Document 2 because it has a higher "reputation".
 - But how can we know the "reputation" of a website?

Web as a Directed Graph

Nodes: Webpages

(Yu's Homepage)

I am teaching CSCE 670 in Fall 2025 ...

(670 Webpage)

CSCE 670 office hours are in the Peterson Building ...

(CSE Webpage)

Dept. of Computer Science & Engineering, TAMU

•••

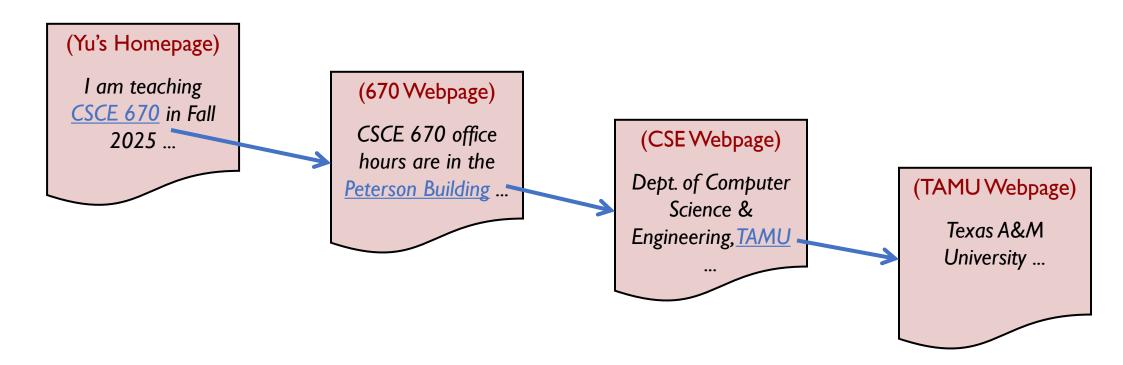
(TAMU Webpage)

Texas A&M University ...

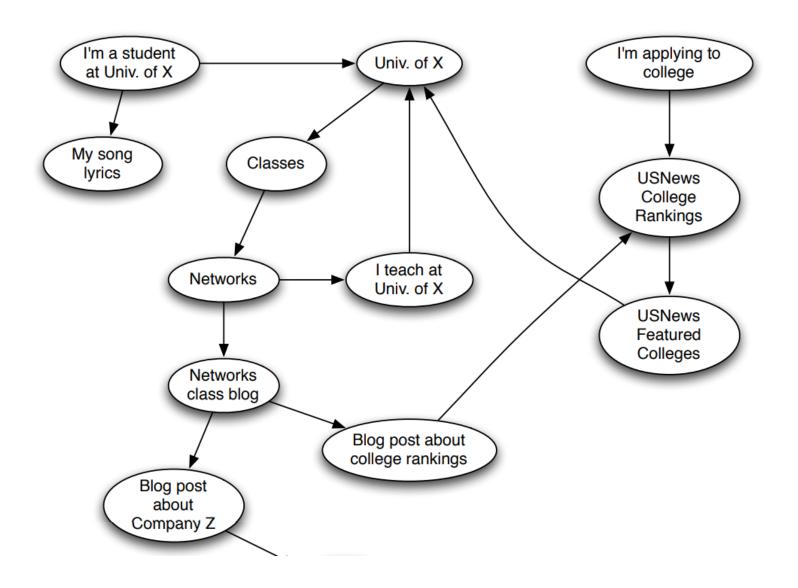
Web as a Directed Graph

Nodes: Webpages

• Edges: Hyperlinks



Web as a Directed Graph



Links as Votes

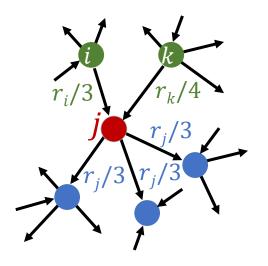
- Rough Idea: A webpage is more important if it has more links
 - In-coming links? Out-going links?
 - Out-going links can be easily manipulated by the webpage creator.
- Think of in-links as votes:
 - www.stanford.edu has 23,400 in-links
 - <u>www.joe-schmoe.com</u> has I in-link
- Are all in-links equal?
 - Links from important webpages count more.
 - Recursive question!

Example: PageRank Scores



Simple Recursive Formulation

- Each link's vote is proportional to the importance of its source page.
- If page j with importance r_i has n out-links, each link gets r_i/n votes
 - A vote from an important page is worth more.
- Page j's own importance is the sum of the votes on its in-links.
 - A page is important if it is pointed to by other important pages



$$r_j = \frac{r_i}{3} + \frac{r_k}{4}$$

In general,
$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

where d_i is the out-degree of i

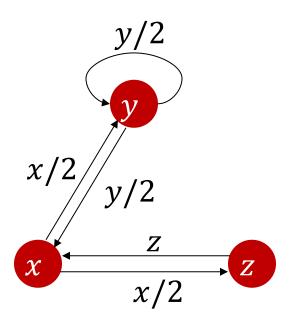
$$\bullet \ \ x = \frac{y}{2} + z \tag{1}$$

$$\bullet \ \ y = \frac{y}{2} + \frac{x}{2} \tag{2}$$

$$\bullet \ \ z = \frac{x}{2} \tag{3}$$

- 3 equations, 3 unknowns. Looks like we can solve it!
- BUT if you add (1) and (2) together,
 - You will get (3).
 - Essentially, we have only 2 equations, so there exist infinitely many sets of solutions.
- Additional constraint forces uniqueness:

•
$$x + y + z = 1$$



$$\bullet \ \ x = \frac{y}{2} + z \tag{1}$$

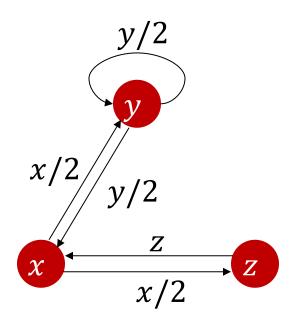
$$\bullet \ \ y = \frac{y}{2} + \frac{x}{2} \tag{2}$$

•
$$x + y + z = 1$$
 (3)

• Solution:

•
$$x = \frac{2}{5}$$
, $y = \frac{2}{5}$, $z = \frac{1}{5}$.

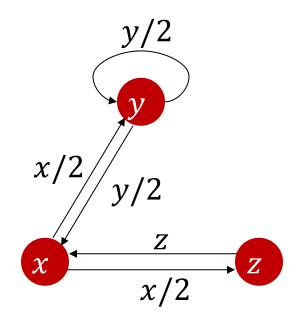
- Gaussian elimination method works for small examples, but we need a better method for large web-size graphs.
 - We need a new formulation!



PageRank: Matrix Formulation

- Stochastic adjacency matrix M
 - Assume page i has d_i out-links
 - If $i \rightarrow j$, then $M_{ji} = \frac{1}{d_i}$, else $M_{ji} = 0$.
 - Entries in each column of M sum to I

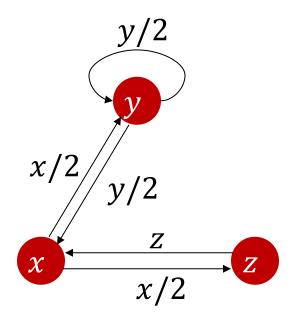
• Example:
$$M = \begin{bmatrix} 0 & 1/2 & 1 \\ 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 \end{bmatrix}$$



PageRank: Matrix Formulation

- Rank vector **r**
 - r_i is the importance score of page i
 - Entries in r sum to I

• Example:
$$r = \begin{bmatrix} 2/5 \\ 2/5 \\ 1/5 \end{bmatrix}$$



PageRank: Matrix Formulation

• Equations:

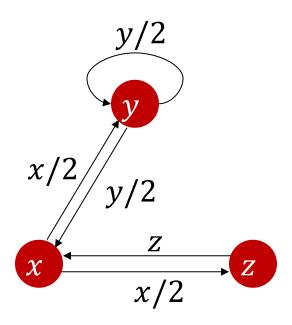
•
$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

• Matrix form: Mr = r

• Example:
$$\begin{bmatrix} 0 & 1/2 & 1 \\ 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 2/5 \\ 2/5 \\ 1/5 \end{bmatrix} = \begin{bmatrix} 2/5 \\ 2/5 \\ 1/5 \end{bmatrix}$$

- PageRank task:
 - Given the stochastic adjacency matrix M, we need to find a rank vector r (whose entries sum to 1), so that

$$Mr = r$$



Solving Mr = r: Power Iteration Method

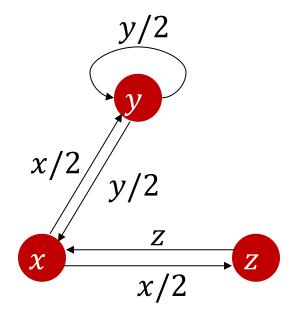
- (Let's first assume this algorithm is correct. We will show why it works later.)
- Power Iteration: a simple iterative scheme
 - Suppose there are N web pages in total
 - Initialize: $r^{(0)} = [1/N,, 1/N]^T$
 - Iterate: $r^{(t+1)} = Mr^{(t)}$
 - Stop when $\| \boldsymbol{r}^{(t+1)} \boldsymbol{r}^{(t)} \| < \epsilon$ (a very small number, e.g., 0.001)
- If the algorithm stops, we have a good solution $m{r}^{(t)}$
 - $Mr^{(t)}$ is very close to $r^{(t)}$

• Power Iteration:

• Initialize: $r^{(0)} = [1/N,, 1/N]^T$

• Iterate: $r^{(t+1)} = Mr^{(t)}$

$$\mathbf{M} = \begin{bmatrix} 0 & 1/2 & 1 \\ 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 \end{bmatrix}$$



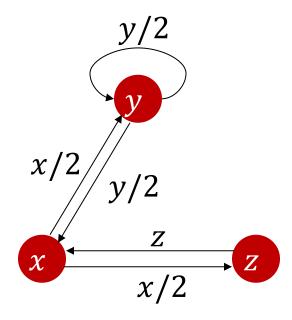
	$r^{(0)}$
x	1/3 (0.33)
y	1/3 (0.33)
Z	1/3 (0.33)

Power Iteration:

• Initialize: $r^{(0)} = [1/N,, 1/N]^T$

• Iterate: $r^{(t+1)} = Mr^{(t)}$

$$\mathbf{M} = \begin{bmatrix} 0 & 1/2 & 1 \\ 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 \end{bmatrix}$$



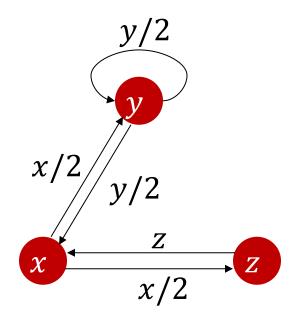
	$r^{(0)}$	$r^{(1)}$
х	1/3 (0.33)	1/2 (0.50)
y	1/3 (0.33)	1/3 (0.33)
Z	1/3 (0.33)	1/6 (0.17)

Power Iteration:

• Initialize: $r^{(0)} = [1/N,, 1/N]^T$

• Iterate: $r^{(t+1)} = Mr^{(t)}$

$$\mathbf{M} = \begin{bmatrix} 0 & 1/2 & 1 \\ 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 \end{bmatrix}$$



	$r^{(0)}$	$r^{(1)}$	$r^{(2)}$	$r^{(3)}$	•••	Finally
x	1/3 (0.33)	1/2 (0.50)	1/3 (0.33)	11/24 (0.46)	• • •	0.40
y	1/3 (0.33)	1/3 (0.33)	5/12 (0.42)	3/8 (0.38)	•••	0.40
Z	1/3 (0.33)	1/6 (0.17)	1/4 (0.25)	1/6 (0.17)	•••	0.20

Questions?

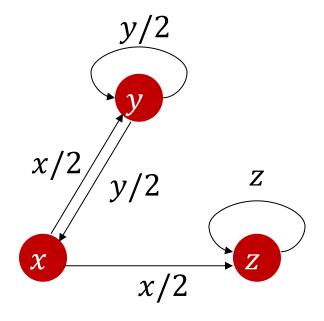
Another Example

• Power Iteration:

• Initialize: $r^{(0)} = [1/N,, 1/N]^T$

• Iterate: $r^{(t+1)} = Mr^{(t)}$

$$\mathbf{M} = \begin{bmatrix} 0 & 1/2 & 0 \\ 1/2 & 1/2 & 0 \\ 1/2 & 0 & 1 \end{bmatrix}$$



	$r^{(0)}$
х	1/3 (0.33)
y	1/3 (0.33)
Z	1/3 (0.33)

Another Example

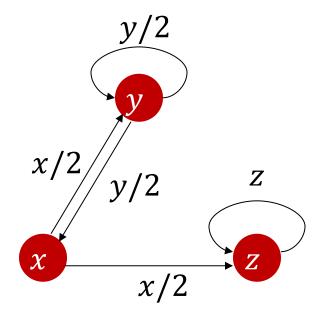
Power Iteration:

• Initialize: $r^{(0)} = [1/N,, 1/N]^T$

• Iterate: $r^{(t+1)} = Mr^{(t)}$

• Stop when $\left\| {{m r}^{(t+1)}} - {m r}^{(t)}
ight\| < \epsilon$

$$\mathbf{M} = \begin{bmatrix} 0 & 1/2 & 0 \\ 1/2 & 1/2 & 0 \\ 1/2 & 0 & 1 \end{bmatrix}$$



All the PageRank scores get "trapped" in node z.

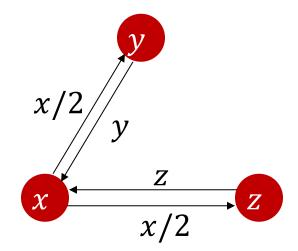
	$r^{(0)}$	$r^{(1)}$	$r^{(2)}$	$r^{(3)}$	•••	Finally
x	1/3 (0.33)	1/6 (0.17)	1/6 (0.17)	1/8 (0.13)	•••	0.00
y	1/3 (0.33)	1/3 (0.33)	1/4 (0.25)	5/24 (0.21)	•••	0.00
Z	1/3 (0.33)	1/2 (0.50)	7/12 (0.58)	2/3 (0.67)	•••	1.00

An Even Worse Example

Power Iteration:

- Initialize: $r^{(0)} = [1/N,, 1/N]^T$
- Iterate: $r^{(t+1)} = Mr^{(t)}$
- Stop when $\left\| {{m r}^{(t+1)}} {m r}^{(t)}
 ight\| < \epsilon$

$$\mathbf{M} = \begin{bmatrix} 0 & 1 & 1 \\ 1/2 & 0 & 0 \\ 1/2 & 0 & 0 \end{bmatrix}$$



The algorithm falls into an infinite loop and will not terminate! Root cause: the graph is bipartite.

	$r^{(0)}$	$r^{(1)}$	$r^{(2)}$	$r^{(3)}$	•••	Finally
\boldsymbol{x}	1/3	2/3	1/3	2/3	•••	?
у	1/3	1/6	1/3	1/6	•••	?
Z	1/3	1/6	1/3	1/6	•••	?

Yet Another Even Worse Example

Power Iteration:

- Initialize: $r^{(0)} = [1/N, ..., 1/N]^T$
- Iterate: $r^{(t+1)} = Mr^{(t)}$
- Stop when $\| {m r}^{(t+1)} {m r}^{(t)} \| < \epsilon$

$$\mathbf{M} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

 $x \longrightarrow y$

All the PageRank scores get "leaked"!
Root cause: the graph has a dead-end node (i.e., no out-links).

	$r^{(0)}$	r ⁽¹⁾	$r^{(2)}$	$r^{(3)}$
х	1/2	0	0	0
\mathcal{Y}	1/2	1/2	0	0

Summary of the Challenges

Spider traps

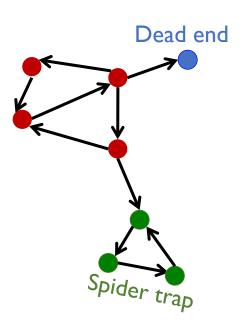
- All out-links are within the group
- Can have more than one node
- Eventually spider traps absorb all importance

Dead ends

- The node has no out-links, therefore its importance score has nowhere to go
- Eventually dead ends cause all importance to "leak out"

Bipartite graph

• If the graph is bipartite and the two partitions have different numbers of nodes, the algorithm will not converge.



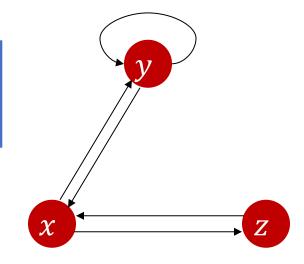
PageRank: Google Formulation

- Google's solution for spider traps: Teleportation!
 - Each node must contribute a portion of its importance score and distribute it evenly to all other nodes.

• Without teleports,
$$M = \begin{bmatrix} 0 & 1/2 & 1 \\ 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 \end{bmatrix}$$

• With teleports,
$$\mathbf{M} = \beta \begin{bmatrix} 0 & 1/2 & 1 \\ 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 \end{bmatrix} + (1 - \beta) \begin{bmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{bmatrix}$$

• In practice, $\beta = 0.8, 0.85$, or 0.9



How about dead ends?

 Dead ends must contribute ALL of its importance score and distribute it evenly to all other nodes.

• Without teleports,
$$\mathbf{M} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

• Without teleports,
$$M = \beta \begin{bmatrix} 0 & 1/2 \\ 1 & 1/2 \end{bmatrix} + (1 - \beta) \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$$

- Why do we call this solution "teleportation"?
 - Part of the importance score still flows according to the graph's defined neighborhoods
 - While the other part can instantly "teleport" to any node in the graph

Why does teleportation solve the problems?

- Spider traps: with traps, PageRank scores are not what we want
 - Solution: Never get stuck in a spider trap by teleporting out of it
- Dead ends: the matrix M is no longer column-stochastic (entries in a column may sum to 0 rather than 1)
 - Solution: Make M column-stochastic by always teleporting when there is nowhere else to go
- Wait, how about the bipartite-graph issue?
 - Teleportation makes the graph fully-connected (with different edge weights) and naturally non-bipartite.

PageRank: Google Formulation [Brin and Page, WWW 1998]

Node-wise form:

$$r_j = \beta \left(\sum_{i \to j} \frac{r_i}{d_i} \right) + (1 - \beta) \frac{1}{N}$$

- Note I: Each node i in the graph teleports a score of $(1-\beta)\frac{1}{N}r_i$ to node j, so the total score node j receives through teleportation is exactly $(1-\beta)\frac{1}{N}\sum_i r_i = (1-\beta)\frac{1}{N}$.
- Note 2: This formulation assumes the graph has no dead ends. If there is a dead end, we can first link it to all the nodes (include itself).

PageRank: Google Formulation [Brin and Page, WWW 1998]

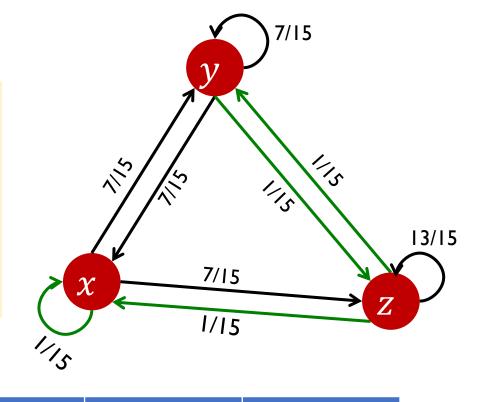
• Matrix form:

$$A = \beta M + (1 - \beta) \frac{1}{N}$$

- Note: 1 is an $N \times N$ matrix where all entries are 1.
- Now we need to solve Ar = r
 - We can still use Power Iteration

Example ($\beta = 0.8$)

$$A = 0.8 \times \begin{bmatrix} 0 & 1/2 & 0 \\ 1/2 & 1/2 & 0 \\ 1/2 & 0 & 1 \end{bmatrix} + 0.2 \times \begin{bmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{bmatrix}$$
$$= \begin{bmatrix} 1/15 & 7/15 & 1/15 \\ 7/15 & 7/15 & 1/15 \\ 7/15 & 1/15 & 13/15 \end{bmatrix}$$



	$r^{(0)}$	$r^{(1)}$	$r^{(2)}$	$r^{(3)}$	•••	Finally
x	1/3	0.20	0.20	0.18	•••	0.15
у	1/3	0.33	0.28	0.26	• • •	0.21
Z	1/3	0.47	0.52	0.56	• • •	0.64

Extended Content (will not appear in quizzes or the exam)

Why does Power Iteration work?

- Ar = r
- In other words, r is an eigenvector of A with the corresponding eigenvalue $\lambda=1$
- Why does A necessarily have an eigenvalue of 1?
- How about other eigenvalues of A?
- Perron-Frobenius Theorem: Let A be a square matrix with all entries strictly positive, and entries in each column sum to 1, then
 - A has an eigenvalue of 1
 - 1 is the unique "largest" eigenvalue of A. That is, for all other eigenvalues λ of A, we have $|\lambda| < 1$.

Why does Power Iteration work?

- Power Iteration:
 - Initialize: $r^{(0)} = [1/N, ..., 1/N]^T$
 - Iterate: $r^{(t+1)} = Ar^{(t)}$

$$r^{(1)} = Ar^{(0)}$$
 $r^{(2)} = Ar^{(1)} = A(Ar^{(1)}) = A^2r^{(0)}$
 $r^{(3)} = Ar^{(2)} = A(A^2r^{(0)}) = A^3r^{(0)}$
...

- We have a sequence of vectors $Ar^{(0)}$, $A^2r^{(0)}$, $A^3r^{(0)}$, ...
- We need to prove that this sequence converges to the eigenvector of ${\it A}$ with the eigenvalue $\lambda=1$

Proof

- Let's assume A has eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_N$, where $1 = \lambda_1 > |\lambda_2| \ge |\lambda_3| \ge \dots \ge |\lambda_N|$
- The eigenvectors corresponding to $\lambda_1, \lambda_2, ..., \lambda_N$ are $x_1, x_2, ..., x_N$
 - Let's also assume that $x_1, x_2, ..., x_N$ are linearly independent
 - If $\lambda_1, \lambda_2, \dots, \lambda_N$ are different from each other, this assumption always holds.
- x_1, x_2, \dots, x_N form a basis, so we can write $r^{(0)} = c_1 x_1 + c_2 x_2 + \dots + c_N x_N$
- $Ar^{(0)} = A(c_1x_1 + c_2x_2 + \dots + c_Nx_N)$ = $c_1Ax_1 + c_2Ax_2 + \dots + c_NAx_N$ = $c_1\lambda_1x_1 + c_2\lambda_2x_2 + \dots + c_N\lambda_Nx_N$
- Repeated multiplication on both sides
- $A^2 r^{(0)} = c_1 \lambda_1^2 x_1 + c_2 \lambda_2^2 x_2 + \dots + c_N \lambda_N^2 x_N$
- $A^k r^{(0)} = c_1 \lambda_1^k x_1 + c_2 \lambda_2^k x_2 + \dots + c_N \lambda_N^k x_N$

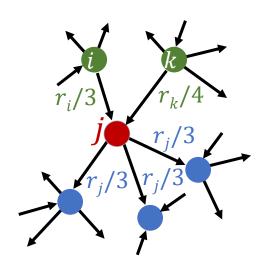
Proof

- Let's assume A has eigenvalues $\lambda_1, \lambda_2, ..., \lambda_N$, where $1 = \lambda_1 > |\lambda_2| \ge |\lambda_3| \ge ... \ge |\lambda_N|$
- The eigenvectors corresponding to $\lambda_1, \lambda_2, ..., \lambda_N$ are $x_1, x_2, ..., x_N$
- Repeated multiplication on both sides
- $\mathbf{A}^k \mathbf{r^{(0)}} = c_1 \lambda_1^k \mathbf{x}_1 + c_2 \lambda_2^k \mathbf{x}_2 + \dots + c_N \lambda_N^k \mathbf{x}_N$ $= \lambda_1^k \left(c_1 \mathbf{x}_1 + c_2 \left(\frac{\lambda_2}{\lambda_1} \right)^k \mathbf{x}_2 + \dots + c_N \left(\frac{\lambda_N}{\lambda_1} \right)^k \mathbf{x}_N \right)$
- Note that $\left| \left(\frac{\lambda_i}{\lambda_1} \right)^k \right| = \left| \frac{\lambda_i}{\lambda_1} \right|^k \to 0$ when $k \to \infty$ (because $|\lambda_i| < |\lambda_1|$)
- Therefore, $A^k r^{(0)} \to \lambda_1^k (c_1 x_1 + 0 + \dots + 0) = c_1 x_1$, which is the eigenvector of A with the eigenvalue $\lambda_1 = 1$.

Note: This proof does not apply to the case where $x_1, x_2, ..., x_N$ are NOT linearly independent, which may happen when A does not have N distinct eigenvalues.

PageRank: Random Walk Interpretation

- Imagine there is a random web surfer
 - At time t, the surfer is on a page i
 - At time t + 1, the surfer has two options
 - With probability β , it follows an out-link from i uniformly at random (i.e., ends up on some page j linked from i)
 - With probability 1β , it jumps to a random page in the graph (can be i, j, or any other node)
- The process repeats indefinitely
- Let p(t) be the vector whose i-th coordinate is the probability that the surfer is at page i at time t
 - So p(t) is a probability distribution over pages



The Stationary Distribution

• Where is the surfer at time t + 1?

$$\boldsymbol{p}(t+1) = \boldsymbol{A} \cdot \boldsymbol{p}(t)$$

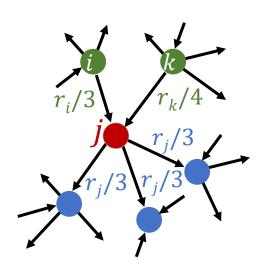
Suppose the random walk reaches a state

$$p(t+1) = A \cdot p(t) = p(t)$$

then p(t) is stationary distribution for the random walk

• So r is a stationary distribution for the random walk

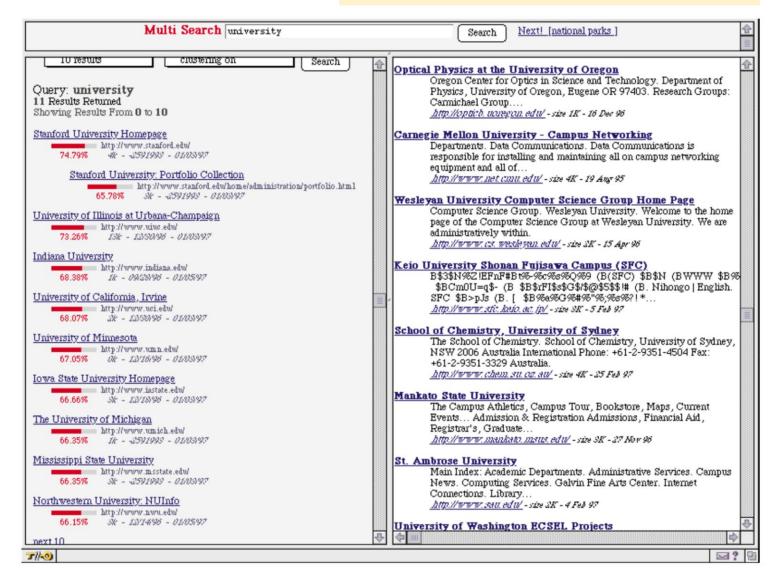
A central result from the theory of random walks (Markov processes): For graphs that satisfy certain conditions (connected and non-bipartite), the stationary distribution is unique and eventually will be reached no matter what the initial probability distribution is at time t=0



Back to the Broader Story of Ranking

Boolean + PageRank results for the query "university" [Page et al., 1999]

- With the rise of the Web, traditional textbased signals (e.g., TF-IDF and BM25) may not be sufficient.
- Many early web search engines relied on classic text-based ranking plus some rudimentary linkbased signals.



Back to the Broader Story of Ranking

- In practice, we will build a scoring function that considers many features.
- Typically, we have:
 - Query-dependent features: e.g., TF-IDF, BM25, # of times a query word occurs in a document, ...
 - Query-independent features: e.g., PageRank, # of in-links to a webpage, popularity of an album, ...
 - Many query-independent features are proxies for "reputation"
- How to jointly consider these features?
 - Week 5

Thank You!

Course Website: https://yuzhang-teaching.github.io/CSCE670-F25.html