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Course Website: https://yuzhang-teaching.github.io/CSCE670-F25.html

Adapted from the slides by Prof. Jure Leskovec (Stanford)
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Recap: BM25
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BM25 𝑞𝑞,𝑑𝑑 = �
𝑡𝑡∈𝑞𝑞

IDF(𝑡𝑡) �
TF(𝑡𝑡,𝑑𝑑) � (𝑘𝑘1 + 1)

TF 𝑡𝑡,𝑑𝑑 + 𝑘𝑘1(1 − 𝑏𝑏 + 𝑏𝑏 � |𝑑𝑑|
avgdl)

• 𝑘𝑘1 controls term frequency scaling
• 𝑘𝑘1 = 0: binary model
• 𝑘𝑘1 very large: raw term frequency

• 𝑏𝑏 controls document length normalization
• 𝑏𝑏 = 0: no document length normalization
• 𝑏𝑏 = 1: relative frequency (full document length normalization)

• Typically, 𝑘𝑘1 is set between 1.2 and 2; 𝑏𝑏 is set around 0.75

• |𝑑𝑑| is the length of 𝑑𝑑 (in words); avgdl = average document length (in words)



Our Plan: Ranking
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•  Why is ranking important?

•  What factors impact ranking?

• Two foundational text-based approaches

•  TF-IDF

•  BM25

• Two foundational link-based approaches
• PageRank
• HITS 

• Machine-learned ranking (“learning to rank”)



Recap: What factors impact ranking?
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• Query: “TAMU 2025 Fall Break”

• Document 1: https://registrar.tamu.edu/academic-calendar/fall-2025 

• Document 2: A social media post written by an account with 10 followers mentioning 
the time of  TAMU 2025 Fall Break

• Document 1 should be ranked higher than Document 2 because it has a higher 
“reputation”.

• But how can we know the “reputation” of a website?

https://registrar.tamu.edu/academic-calendar/fall-2025
https://registrar.tamu.edu/academic-calendar/fall-2025
https://registrar.tamu.edu/academic-calendar/fall-2025
https://registrar.tamu.edu/academic-calendar/fall-2025
https://registrar.tamu.edu/academic-calendar/fall-2025


Web as a Directed Graph
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• Nodes: Webpages

(Yu’s Homepage)

I am teaching 
CSCE 670 in Fall 

2025 ...

(670 Webpage)

CSCE 670 office 
hours are in the 

Peterson Building ...

(CSE Webpage)

Dept. of Computer 
Science & 

Engineering, TAMU 
...

(TAMU Webpage)

Texas A&M 
University ...



Web as a Directed Graph
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• Nodes: Webpages
• Edges: Hyperlinks

(Yu’s Homepage)

I am teaching 
CSCE 670 in Fall 

2025 ...

(670 Webpage)

CSCE 670 office 
hours are in the 

Peterson Building ...

(CSE Webpage)

Dept. of Computer 
Science & 

Engineering, TAMU 
...

(TAMU Webpage)

Texas A&M 
University ...



Web as a Directed Graph
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Links as Votes
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• Rough Idea: A webpage is more important if it has more links
• In-coming links? Out-going links?
• Out-going links can be easily manipulated by the webpage creator.

• Think of in-links as votes:
• www.stanford.edu has 23,400 in-links
• www.joe-schmoe.com has 1 in-link

• Are all in-links equal?
• Links from important webpages count more.
• Recursive question! 

http://www.stanford.edu/
http://www.stanford.edu/
http://www.joe-schmoe.com/
http://www.joe-schmoe.com/
http://www.joe-schmoe.com/
http://www.joe-schmoe.com/


Example: PageRank Scores
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Simple Recursive Formulation
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• Each link’s vote is proportional to the importance of its source page.
• If page 𝑗𝑗 with importance 𝑟𝑟𝑗𝑗 has 𝑛𝑛 out-links, each link gets 𝑟𝑟𝑗𝑗/𝑛𝑛 votes

• A vote from an important page is worth more.

• Page 𝑗𝑗’s own importance is the sum of the votes on its in-links.
• A page is important if it is pointed to by other important pages

𝑗𝑗

𝑘𝑘𝑖𝑖

𝑟𝑟𝑗𝑗/3

𝑟𝑟𝑗𝑗/3𝑟𝑟𝑗𝑗/3

𝑟𝑟𝑖𝑖/3 𝑟𝑟𝑘𝑘/4
𝑟𝑟𝑗𝑗 =

𝑟𝑟𝑖𝑖
3 +

𝑟𝑟𝑘𝑘
4

In general, 𝑟𝑟𝑗𝑗 = �
𝑖𝑖→𝑗𝑗

𝑟𝑟𝑖𝑖
𝑑𝑑𝑖𝑖

where 𝑑𝑑𝑖𝑖 is the out-degree of 𝑖𝑖



Example

11

• 𝑥𝑥 = 𝑦𝑦
2

+ 𝑧𝑧  (1)

• 𝑦𝑦 = 𝑦𝑦
2

+ 𝑥𝑥
2
  (2)

• 𝑧𝑧 = 𝑥𝑥
2
   (3)

• 3 equations, 3 unknowns. Looks like we can solve it!
• BUT if you add (1) and (2) together,

• You will get (3).
• Essentially, we have only 2 equations, so there exist 

infinitely many sets of solutions.

• Additional constraint forces uniqueness:
• 𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧 = 1

𝑦𝑦

𝑧𝑧𝑥𝑥
𝑥𝑥/2

𝑦𝑦/2
𝑥𝑥/2

𝑧𝑧

𝑦𝑦/2



Example
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• 𝑥𝑥 = 𝑦𝑦
2

+ 𝑧𝑧  (1)

• 𝑦𝑦 = 𝑦𝑦
2

+ 𝑥𝑥
2
  (2)

• 𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧 = 1 (3)

• Solution:

• 𝑥𝑥 = 2
5

,𝑦𝑦 = 2
5

, 𝑧𝑧 = 1
5

.

• Gaussian elimination method works for small examples, but 
we need a better method for large web-size graphs.

• We need a new formulation!

𝑦𝑦

𝑧𝑧𝑥𝑥
𝑥𝑥/2

𝑦𝑦/2
𝑥𝑥/2

𝑧𝑧

𝑦𝑦/2



PageRank: Matrix Formulation
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• Stochastic adjacency matrix 𝑴𝑴
• Assume page 𝑖𝑖 has 𝑑𝑑𝑖𝑖 out-links

• If 𝑖𝑖 → 𝑗𝑗, then 𝑀𝑀𝑗𝑗𝑗𝑗 = 1
𝑑𝑑𝑖𝑖

, else 𝑀𝑀𝑗𝑗𝑗𝑗 = 0.

• Entries in each column of 𝑴𝑴 sum to 1

• Example: 𝑴𝑴 =
0 1/2 1

1/2 1/2 0
1/2 0 0

𝑦𝑦

𝑧𝑧𝑥𝑥
𝑥𝑥/2

𝑦𝑦/2
𝑥𝑥/2

𝑧𝑧

𝑦𝑦/2



PageRank: Matrix Formulation
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• Rank vector 𝒓𝒓
• 𝑟𝑟𝑖𝑖 is the importance score of page 𝑖𝑖
• Entries in 𝒓𝒓 sum to 1

• Example: 𝒓𝒓 =
2/5
2/5
1/5

𝑦𝑦

𝑧𝑧𝑥𝑥
𝑥𝑥/2

𝑦𝑦/2
𝑥𝑥/2

𝑧𝑧

𝑦𝑦/2



PageRank: Matrix Formulation
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• Equations:

• 𝑟𝑟𝑗𝑗 = ∑𝑖𝑖→𝑗𝑗
𝑟𝑟𝑖𝑖
𝑑𝑑𝑖𝑖

• Matrix form: 𝑴𝑴𝑴𝑴 = 𝒓𝒓

• Example: 
0 1/2 1

1/2 1/2 0
1/2 0 0

×
2/5
2/5
1/5

=
2/5
2/5
1/5

• PageRank task:
• Given the stochastic adjacency matrix 𝑴𝑴, we need to 

find a rank vector 𝒓𝒓 (whose entries sum to 1), so that

𝑴𝑴𝑴𝑴 = 𝒓𝒓

𝑦𝑦

𝑧𝑧𝑥𝑥
𝑥𝑥/2

𝑦𝑦/2
𝑥𝑥/2

𝑧𝑧

𝑦𝑦/2



Solving 𝑴𝑴𝑴𝑴 = 𝒓𝒓: Power Iteration Method
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• (Let’s first assume this algorithm is correct. We will show why it works later.)
• Power Iteration: a simple iterative scheme

• Suppose there are 𝑁𝑁 web pages in total

• Initialize: 𝒓𝒓(0)= [1/𝑁𝑁, … . , 1/𝑁𝑁]𝑇𝑇

• Iterate: 𝒓𝒓(𝑡𝑡+1) = 𝑴𝑴𝒓𝒓(𝑡𝑡)

• Stop when 𝒓𝒓 𝑡𝑡+1 − 𝒓𝒓 𝑡𝑡 < 𝜖𝜖       (a very small number, e.g., 0.001)

• If the algorithm stops, we have a good solution 𝒓𝒓 𝑡𝑡

• 𝑴𝑴𝒓𝒓(𝑡𝑡) is very close to 𝒓𝒓 𝑡𝑡



Example
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• Power Iteration:

• Initialize: 𝒓𝒓(0)= [1/𝑁𝑁, … . , 1/𝑁𝑁]𝑇𝑇

• Iterate: 𝒓𝒓(𝑡𝑡+1) = 𝑴𝑴𝒓𝒓(𝑡𝑡)

• Stop when 𝒓𝒓 𝑡𝑡+1 − 𝒓𝒓 𝑡𝑡 < 𝜖𝜖

𝑦𝑦

𝑧𝑧𝑥𝑥
𝑥𝑥/2

𝑦𝑦/2
𝑥𝑥/2

𝑧𝑧

𝑦𝑦/2

𝑴𝑴 =
0 1/2 1

1/2 1/2 0
1/2 0 0

𝒓𝒓(0)

𝑥𝑥 1/3 (0.33)

𝑦𝑦 1/3 (0.33)

𝑧𝑧 1/3 (0.33)



Example
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• Power Iteration:

• Initialize: 𝒓𝒓(0)= [1/𝑁𝑁, … . , 1/𝑁𝑁]𝑇𝑇

• Iterate: 𝒓𝒓(𝑡𝑡+1) = 𝑴𝑴𝒓𝒓(𝑡𝑡)

• Stop when 𝒓𝒓 𝑡𝑡+1 − 𝒓𝒓 𝑡𝑡 < 𝜖𝜖

𝑦𝑦

𝑧𝑧𝑥𝑥
𝑥𝑥/2

𝑦𝑦/2
𝑥𝑥/2

𝑧𝑧

𝑦𝑦/2

𝑴𝑴 =
0 1/2 1

1/2 1/2 0
1/2 0 0

𝒓𝒓(0) 𝒓𝒓(𝟏𝟏)

𝑥𝑥 1/3 (0.33) 1/2 (0.50)

𝑦𝑦 1/3 (0.33) 1/3 (0.33)

𝑧𝑧 1/3 (0.33) 1/6 (0.17)



Example
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• Power Iteration:

• Initialize: 𝒓𝒓(0)= [1/𝑁𝑁, … . , 1/𝑁𝑁]𝑇𝑇

• Iterate: 𝒓𝒓(𝑡𝑡+1) = 𝑴𝑴𝒓𝒓(𝑡𝑡)

• Stop when 𝒓𝒓 𝑡𝑡+1 − 𝒓𝒓 𝑡𝑡 < 𝜖𝜖

𝑦𝑦

𝑧𝑧𝑥𝑥
𝑥𝑥/2

𝑦𝑦/2
𝑥𝑥/2

𝑧𝑧

𝑦𝑦/2

𝑴𝑴 =
0 1/2 1

1/2 1/2 0
1/2 0 0

𝒓𝒓(0) 𝒓𝒓(𝟏𝟏) 𝒓𝒓(𝟐𝟐) 𝒓𝒓(𝟑𝟑) … Finally

𝑥𝑥 1/3 (0.33) 1/2 (0.50) 1/3 (0.33) 11/24 (0.46) … 0.40

𝑦𝑦 1/3 (0.33) 1/3 (0.33) 5/12 (0.42) 3/8 (0.38) … 0.40

𝑧𝑧 1/3 (0.33) 1/6 (0.17) 1/4 (0.25) 1/6 (0.17) … 0.20



Questions?
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Another Example
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• Power Iteration:

• Initialize: 𝒓𝒓(0)= [1/𝑁𝑁, … . , 1/𝑁𝑁]𝑇𝑇

• Iterate: 𝒓𝒓(𝑡𝑡+1) = 𝑴𝑴𝒓𝒓(𝑡𝑡)

• Stop when 𝒓𝒓 𝑡𝑡+1 − 𝒓𝒓 𝑡𝑡 < 𝜖𝜖

𝑦𝑦

𝑧𝑧𝑥𝑥
𝑥𝑥/2

𝑦𝑦/2
𝑥𝑥/2

𝑦𝑦/2

𝑴𝑴 =
0 1/2 0

1/2 1/2 0
1/2 0 1

𝒓𝒓(0)

𝑥𝑥 1/3 (0.33)

𝑦𝑦 1/3 (0.33)

𝑧𝑧 1/3 (0.33)

𝑧𝑧



Another Example
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• Power Iteration:

• Initialize: 𝒓𝒓(0)= [1/𝑁𝑁, … . , 1/𝑁𝑁]𝑇𝑇

• Iterate: 𝒓𝒓(𝑡𝑡+1) = 𝑴𝑴𝒓𝒓(𝑡𝑡)

• Stop when 𝒓𝒓 𝑡𝑡+1 − 𝒓𝒓 𝑡𝑡 < 𝜖𝜖

𝑦𝑦

𝑧𝑧𝑥𝑥
𝑥𝑥/2

𝑦𝑦/2
𝑥𝑥/2

𝑦𝑦/2

𝑴𝑴 =
0 1/2 0

1/2 1/2 0
1/2 0 1

𝑧𝑧

𝒓𝒓(0) 𝒓𝒓(𝟏𝟏) 𝒓𝒓(𝟐𝟐) 𝒓𝒓(𝟑𝟑) … Finally

𝑥𝑥 1/3 (0.33) 1/6 (0.17) 1/6 (0.17) 1/8 (0.13) … 0.00

𝑦𝑦 1/3 (0.33) 1/3 (0.33) 1/4 (0.25) 5/24 (0.21) … 0.00

𝑧𝑧 1/3 (0.33) 1/2 (0.50) 7/12 (0.58) 2/3 (0.67) … 1.00

All the PageRank scores get “trapped” in node 𝑧𝑧.



An Even Worse Example
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𝑦𝑦

𝑧𝑧𝑥𝑥
𝑥𝑥/2

𝑦𝑦
𝑥𝑥/2

𝑧𝑧

• Power Iteration:

• Initialize: 𝒓𝒓(0)= [1/𝑁𝑁, … . , 1/𝑁𝑁]𝑇𝑇

• Iterate: 𝒓𝒓(𝑡𝑡+1) = 𝑴𝑴𝒓𝒓(𝑡𝑡)

• Stop when 𝒓𝒓 𝑡𝑡+1 − 𝒓𝒓 𝑡𝑡 < 𝜖𝜖

𝑴𝑴 =
0 1 1

1/2 0 0
1/2 0 0

𝒓𝒓(0) 𝒓𝒓(𝟏𝟏) 𝒓𝒓(𝟐𝟐) 𝒓𝒓(𝟑𝟑) … Finally

𝑥𝑥 1/3 2/3 1/3 2/3 … ?

𝑦𝑦 1/3 1/6 1/3 1/6 … ?

𝑧𝑧 1/3 1/6 1/3 1/6 … ?

The algorithm falls into an infinite loop and will not terminate!
Root cause: the graph is bipartite.



Yet Another Even Worse Example
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𝑦𝑦𝑥𝑥

• Power Iteration:

• Initialize: 𝒓𝒓(0)= [1/𝑁𝑁, … . , 1/𝑁𝑁]𝑇𝑇

• Iterate: 𝒓𝒓(𝑡𝑡+1) = 𝑴𝑴𝒓𝒓(𝑡𝑡)

• Stop when 𝒓𝒓 𝑡𝑡+1 − 𝒓𝒓 𝑡𝑡 < 𝜖𝜖

𝑴𝑴 = 0 0
1 0

𝒓𝒓(0) 𝒓𝒓(𝟏𝟏) 𝒓𝒓(𝟐𝟐) 𝒓𝒓(𝟑𝟑)

𝑥𝑥 1/2 0 0 0

𝑦𝑦 1/2 1/2 0 0

All the PageRank scores get “leaked”!
Root cause: the graph has a dead-end node (i.e., no out-links).



Summary of the Challenges
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• Spider traps 
• All out-links are within the group
• Can have more than one node
• Eventually spider traps absorb all importance

• Dead ends
• The node has no out-links, therefore its importance score 

has nowhere to go
• Eventually dead ends cause all importance to “leak out”

• Bipartite graph
• If the graph is bipartite and the two partitions have different 

numbers of nodes, the algorithm will not converge.

Dead end



PageRank: Google Formulation
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• Google’s solution for spider traps: Teleportation!
• Each node must contribute a portion of its importance score and distribute it evenly 

to all other nodes.

• Without teleports, 𝑴𝑴 =
0 1/2 1

1/2 1/2 0
1/2 0 0

• With teleports, 𝑴𝑴 = 𝛽𝛽
0 1/2 1

1/2 1/2 0
1/2 0 0

+ (1 − 𝛽𝛽)
1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

• In practice, 𝛽𝛽 = 0.8, 0.85, or 0.9

𝑦𝑦

𝑧𝑧𝑥𝑥



How about dead ends?
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• Dead ends must contribute ALL of its importance score and distribute it evenly to all 
other nodes.

• Without teleports, 𝑴𝑴 = 0 0
1 0

• Without teleports, 𝑴𝑴 = 𝛽𝛽 0 1/2
1 1/2 + (1 − 𝛽𝛽) 1/2 1/2

1/2 1/2

• Why do we call this solution “teleportation”?
• Part of the importance score still flows according to the graph's defined 

neighborhoods
• While the other part can instantly “teleport” to any node in the graph

𝑦𝑦𝑥𝑥



Why does teleportation solve the problems?
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• Spider traps: with traps, PageRank scores are not what we want
• Solution: Never get stuck in a spider trap by teleporting out of it

• Dead ends: the matrix 𝑴𝑴 is no longer column-stochastic (entries in a column may sum 
to 0 rather than 1)

• Solution: Make 𝑴𝑴 column-stochastic by always teleporting when there is nowhere 
else to go

• Wait, how about the bipartite-graph issue?
• Teleportation makes the graph fully-connected (with different edge weights) and 

naturally non-bipartite.



PageRank: Google Formulation [Brin and Page, WWW 1998]
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• Node-wise form:

𝑟𝑟𝑗𝑗 = 𝛽𝛽 �
𝑖𝑖→𝑗𝑗

𝑟𝑟𝑖𝑖
𝑑𝑑𝑖𝑖

+ (1 − 𝛽𝛽)
1
𝑁𝑁

• Note 1: Each node 𝑖𝑖 in the graph teleports a score of (1 − 𝛽𝛽) 1
𝑁𝑁
𝑟𝑟𝑖𝑖 to node 𝑗𝑗, so the total 

score node 𝑗𝑗 receives through teleportation is exactly 1 − 𝛽𝛽 1
𝑁𝑁
∑𝑖𝑖 𝑟𝑟𝑖𝑖 = 1 − 𝛽𝛽 1

𝑁𝑁
.

• Note 2:This formulation assumes the graph has no dead ends. If there is a dead end, we 
can first link it to all the nodes (include itself).



PageRank: Google Formulation [Brin and Page, WWW 1998]

30

• Matrix form:

𝑨𝑨 = 𝛽𝛽𝑴𝑴 + (1 − 𝛽𝛽)
𝟏𝟏
𝑁𝑁

• Note: 𝟏𝟏 is an 𝑁𝑁 × 𝑁𝑁 matrix where all entries are 1.

• Now we need to solve 𝑨𝑨𝒓𝒓 = 𝒓𝒓
• We can still use Power Iteration



Example (𝛽𝛽 = 0.8)
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𝑨𝑨 = 0.8 ×
0 1/2 0

1/2 1/2 0
1/2 0 1

+ 0.2 ×
1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

=
1/15 7/15 1/15
7/15 7/15 1/15
7/15 1/15 13/15

 

𝑦𝑦

𝑥𝑥 𝑧𝑧

13/15

7/15

𝒓𝒓(0) 𝒓𝒓(𝟏𝟏) 𝒓𝒓(𝟐𝟐) 𝒓𝒓(𝟑𝟑) … Finally

𝑥𝑥 1/3 0.20 0.20 0.18 … 0.15

𝑦𝑦 1/3 0.33 0.28 0.26 … 0.21

𝑧𝑧 1/3 0.47 0.52 0.56 … 0.64



Extended Content
(will not appear in quizzes or the exam)
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• 𝑨𝑨𝑨𝑨 = 𝒓𝒓
• In other words, 𝒓𝒓 is an eigenvector of 𝑨𝑨 with the corresponding eigenvalue 𝜆𝜆 = 1

• Why does 𝑨𝑨 necessarily have an eigenvalue of 1?
• How about other eigenvalues of 𝑨𝑨?

• Perron–Frobenius Theorem: Let 𝑨𝑨 be a square matrix with all entries strictly positive, 
and entries in each column sum to 1, then

• 𝑨𝑨 has an eigenvalue of 1
• 1 is the unique “largest” eigenvalue of 𝑨𝑨. That is, for all other eigenvalues 𝜆𝜆 of 𝑨𝑨, we 

have 𝜆𝜆 < 1.
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• Power Iteration:

• Initialize: 𝒓𝒓(0)= [1/𝑁𝑁, … . , 1/𝑁𝑁]𝑇𝑇

• Iterate: 𝒓𝒓(𝑡𝑡+1) = 𝑨𝑨𝒓𝒓(𝑡𝑡)

𝒓𝒓(𝟏𝟏) = 𝑨𝑨𝒓𝒓(𝟎𝟎)

𝒓𝒓(𝟐𝟐) = 𝑨𝑨𝒓𝒓 𝟏𝟏 = 𝑨𝑨 𝑨𝑨𝒓𝒓 𝟏𝟏 = 𝑨𝑨𝟐𝟐𝒓𝒓 𝟎𝟎

𝒓𝒓(𝟑𝟑) = 𝑨𝑨𝒓𝒓 𝟐𝟐 = 𝑨𝑨 𝑨𝑨𝟐𝟐𝒓𝒓 𝟎𝟎 = 𝑨𝑨𝟑𝟑𝒓𝒓 𝟎𝟎

…

• We have a sequence of vectors 𝑨𝑨𝒓𝒓(𝟎𝟎), 𝑨𝑨𝟐𝟐𝒓𝒓 𝟎𝟎 , 𝑨𝑨𝟑𝟑𝒓𝒓 𝟎𝟎 , …
• We need to prove that this sequence converges to the eigenvector of 𝑨𝑨 with the 

eigenvalue 𝜆𝜆 = 1
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• Let’s assume 𝑨𝑨 has eigenvalues 𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑁𝑁, where 1 = 𝜆𝜆1 > 𝜆𝜆2 ≥ 𝜆𝜆3 ≥ ⋯ ≥ 𝜆𝜆𝑁𝑁
• The eigenvectors corresponding to 𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑁𝑁 are 𝒙𝒙1,𝒙𝒙2, … ,𝒙𝒙𝑁𝑁

• Let’s also assume that 𝒙𝒙1,𝒙𝒙2, … ,𝒙𝒙𝑁𝑁 are linearly independent
• If 𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑁𝑁 are different from each other, this assumption always holds.

• 𝒙𝒙1,𝒙𝒙2, … ,𝒙𝒙𝑁𝑁 form a basis, so we can write 𝒓𝒓(𝟎𝟎) = 𝑐𝑐1𝒙𝒙1 + 𝑐𝑐2𝒙𝒙2 + ⋯+ 𝑐𝑐𝑁𝑁𝒙𝒙𝑁𝑁
• 𝑨𝑨𝒓𝒓(𝟎𝟎) = 𝑨𝑨 𝑐𝑐1𝒙𝒙1 + 𝑐𝑐2𝒙𝒙2 + ⋯+ 𝑐𝑐𝑁𝑁𝒙𝒙𝑁𝑁
            = 𝑐𝑐1𝑨𝑨𝒙𝒙1 + 𝑐𝑐2𝑨𝑨𝒙𝒙2 + ⋯+ 𝑐𝑐𝑁𝑁𝑨𝑨𝒙𝒙𝑁𝑁
            = 𝑐𝑐1𝜆𝜆1𝒙𝒙1 + 𝑐𝑐2𝜆𝜆2𝒙𝒙2 + ⋯+ 𝑐𝑐𝑁𝑁𝜆𝜆𝑁𝑁𝒙𝒙𝑁𝑁

• Repeated multiplication on both sides

• 𝑨𝑨2𝒓𝒓 𝟎𝟎 = 𝑐𝑐1𝜆𝜆12𝒙𝒙1 + 𝑐𝑐2𝜆𝜆22𝒙𝒙2 + ⋯+ 𝑐𝑐𝑁𝑁𝜆𝜆𝑁𝑁2 𝒙𝒙𝑁𝑁
• 𝑨𝑨𝑘𝑘𝒓𝒓 𝟎𝟎 = 𝑐𝑐1𝜆𝜆1𝑘𝑘𝒙𝒙1 + 𝑐𝑐2𝜆𝜆2𝑘𝑘𝒙𝒙2 + ⋯+ 𝑐𝑐𝑁𝑁𝜆𝜆𝑁𝑁𝑘𝑘 𝒙𝒙𝑁𝑁
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• Let’s assume 𝑨𝑨 has eigenvalues 𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑁𝑁, where 1 = 𝜆𝜆1 > 𝜆𝜆2 ≥ 𝜆𝜆3 ≥ ⋯ ≥ 𝜆𝜆𝑁𝑁
• The eigenvectors corresponding to 𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑁𝑁 are 𝒙𝒙1,𝒙𝒙2, … ,𝒙𝒙𝑁𝑁

• Repeated multiplication on both sides

• 𝑨𝑨𝑘𝑘𝒓𝒓 𝟎𝟎 = 𝑐𝑐1𝜆𝜆1𝑘𝑘𝒙𝒙1 + 𝑐𝑐2𝜆𝜆2𝑘𝑘𝒙𝒙2 + ⋯+ 𝑐𝑐𝑁𝑁𝜆𝜆𝑁𝑁𝑘𝑘 𝒙𝒙𝑁𝑁

              = 𝜆𝜆1𝑘𝑘 𝑐𝑐1𝒙𝒙1 + 𝑐𝑐2
𝜆𝜆2
𝜆𝜆1

𝑘𝑘
𝒙𝒙2 + ⋯+ 𝑐𝑐𝑁𝑁

𝜆𝜆𝑁𝑁
𝜆𝜆1

𝑘𝑘
𝒙𝒙𝑁𝑁

• Note that 𝜆𝜆𝑖𝑖
𝜆𝜆1

𝑘𝑘
= 𝜆𝜆𝑖𝑖

𝜆𝜆1

𝑘𝑘
→ 0 when 𝑘𝑘 → ∞  (because 𝜆𝜆𝑖𝑖 < 𝜆𝜆1 )

• Therefore, 𝑨𝑨𝑘𝑘𝒓𝒓 𝟎𝟎 → 𝜆𝜆1𝑘𝑘 𝑐𝑐1𝒙𝒙1 + 0 + ⋯+ 0 = 𝑐𝑐1𝒙𝒙1, which is the eigenvector of 𝑨𝑨 with 
the eigenvalue 𝜆𝜆1 = 1.

Note: This proof does not apply to the case where 𝒙𝒙1,𝒙𝒙2, … , 𝒙𝒙𝑁𝑁 are NOT linearly independent, which may 
happen when 𝑨𝑨 does not have 𝑁𝑁 distinct eigenvalues.
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• Imagine there is a random web surfer
• At time 𝑡𝑡, the surfer is on a page 𝑖𝑖
• At time 𝑡𝑡 + 1, the surfer has two options

• With probability 𝛽𝛽, it follows an out-link from 𝑖𝑖 uniformly 
at random (i.e., ends up on some page 𝑗𝑗 linked from 𝑖𝑖)

• With probability 1 − 𝛽𝛽, it jumps to a random page in the 
graph (can be 𝑖𝑖, 𝑗𝑗, or any other node)

• The process repeats indefinitely
• Let 𝒑𝒑(𝑡𝑡) be the vector whose 𝑖𝑖-th coordinate is the probability 

that the surfer is at page 𝑖𝑖 at time 𝑡𝑡
• So 𝒑𝒑(𝑡𝑡) is a probability distribution over pages

𝑗𝑗

𝑘𝑘𝑖𝑖

𝑟𝑟𝑗𝑗/3

𝑟𝑟𝑗𝑗/3𝑟𝑟𝑗𝑗/3

𝑟𝑟𝑖𝑖/3 𝑟𝑟𝑘𝑘/4
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• Where is the surfer at time 𝑡𝑡 + 1?

𝒑𝒑(𝑡𝑡 + 1) = 𝑨𝑨 ⋅ 𝒑𝒑(𝑡𝑡)

• Suppose the random walk reaches a state

𝒑𝒑(𝑡𝑡 + 1) = 𝑨𝑨 ⋅ 𝒑𝒑(𝑡𝑡) =  𝒑𝒑(𝑡𝑡)
   then 𝒑𝒑(𝒕𝒕) is stationary distribution for the random walk

• The PageRank vector 𝒓𝒓 satisfies 𝒓𝒓 = 𝑨𝑨 ⋅ 𝒓𝒓
• So 𝒓𝒓 is a stationary distribution for the random walk

𝑗𝑗

𝑘𝑘𝑖𝑖

𝑟𝑟𝑗𝑗/3

𝑟𝑟𝑗𝑗/3𝑟𝑟𝑗𝑗/3

𝑟𝑟𝑖𝑖/3 𝑟𝑟𝑘𝑘/4

A central result from the theory of random walks (Markov processes):
For graphs that satisfy certain conditions (connected and non-bipartite),  the 
stationary distribution is unique and eventually will be reached no matter 
what the initial probability distribution is at time 𝑡𝑡 =  0
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• With the rise of the 
Web, traditional text-
based signals (e.g., TF-
IDF and BM25) may not 
be sufficient.

• Many early web search 
engines relied on classic 
text-based ranking plus 
some rudimentary link-
based signals.

Boolean + PageRank results for the 
query “university” [Page et al., 1999]
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• In practice, we will build a scoring function that considers many features. 
• Typically, we have:

• Query-dependent features: e.g., TF-IDF, BM25, # of times a query word occurs in a 
document, …

• Query-independent features: e.g., PageRank, # of in-links to a webpage, popularity of 
an album, …

• Many query-independent features are proxies for “reputation”

• How to jointly consider these features?
• Week 5



Thank You!
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Course Website: https://yuzhang-teaching.github.io/CSCE670-F25.html
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