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Recap: BM25

TF(t,d) - (ky + 1)

BM25(q, d) = Z IDF(t) -

teq TF(t;d)+k1(1—b-|—b. |d|

avgdl)

k; controls term frequency scaling
* ky = 0:binary model

* kq very large: raw term frequency

b controls document length normalization
* b = 0:no document length normalization

* b = l:relative frequency (full document length normalization)

Typically, k, is set between |.2 and 2; b is set around 0.75

|d| is the length of d (in words); avgdl = average document length (in words)



Our Plan: Ranking

. Why is ranking important?

. What factors impact ranking?

Two foundational text-based approaches
* B4| TF-IDF

Two foundational link-based approaches
* PageRank
* HITS

Machine-learned ranking (“learning to rank”)



Recap: What factors impact ranking?

Query:“TAMU 2025 Fall Break”

Document I: https://registrar.tamu.edu/academic-calendar/fall-2025
TEXAS A&M UNIVERSITY
J’.‘Il\.'I Office of the Registrar

Document 2:A social media post written by an account with 10 followers mentioning
the time of TAMU 2025 Fall Break

Document | should be ranked higher than Document 2 because it has a higher
“reputation”.

* But how can we know the “reputation” of a website!?


https://registrar.tamu.edu/academic-calendar/fall-2025
https://registrar.tamu.edu/academic-calendar/fall-2025
https://registrar.tamu.edu/academic-calendar/fall-2025
https://registrar.tamu.edu/academic-calendar/fall-2025
https://registrar.tamu.edu/academic-calendar/fall-2025

Web as a Directed Graph

* Nodes:VWebpages
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__—
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-



Web as a Directed Graph

* Nodes:VWebpages
* Edges: Hyperlinks

(Yu’s Homepage)

| am teaching

CSCE 670 in Fall
2025 .

__—

(670 Webpage)

CSCE 670 office
hours are in the
Peterson Building ..™

-

(CSE Webpage)

Dept. of Computer
Science &
Engineering, TAMU .

(TAMU Webpage)

Texas A&M
University ...

-



Web as a Directed Graph

I'm a student
at Univ. of X

I'm applying to
college

USNews
College
Rankings

| teach at
Univ. of X
USNews

Featured
Colleges

Networks
class blog

Blog post about
college rankings

Blog post
about
Company Z




Links as Votes

* Rough Idea: A webpage is more important if it has more links
* In-coming links? Out-going links?

* Out-going links can be easily manipulated by the webpage creator.

 Think of in-links as votes:

 www.stanford.edu has 23,400 in-links

* www.joe-schmoe.com has | in-link

* Are all in-links equal?
* Links from important webpages count more.

* Recursive question!


http://www.stanford.edu/
http://www.stanford.edu/
http://www.joe-schmoe.com/
http://www.joe-schmoe.com/
http://www.joe-schmoe.com/
http://www.joe-schmoe.com/

Example: PageRank Scores

00 ;
0.384




Simple Recursive Formulation

* Each link’s vote is proportional to the importance of its source page.

* If page j with importance 7; has n out-links, each link gets 7; /1 votes

* A vote from an important page is worth more.

* Page j’s own importance is the sum of the votes on its in-links.

* A page is important if it is pointed to by other important pages

>{ Ti
/MK In general, =
T

/

T‘i/3j - E + T_k - i) d_l
/ ~ 737,

X/3\2£ where d; is the out-degree of i

-

/
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Example

°x=§+z (1)
Yy =343 2)
z=3 3)

3 equations, 3 unknowns. Looks like we can solve it!
BUT if you add (I) and (2) together,
* You will get (3).

* Essentially, we have only 2 equations, so there exist
infinitely many sets of solutions.

* Additional constraint forces uniqueness:
x+y+z=1
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'X=E+Z (|)
Yy =343 2)
*x+y+z= (3)
* Solution:
« v =2 ,,-2__1
— 5V T 54T

Gaussian elimination method works for small examples, but
we need a better method for large web-size graphs.

* We need a new formulation!

12



PageRank: Matrix Formulation

* Stochastic adjacency matrix M
* Assume page i has d; out-links
* If i - j,then M;; = dii, else M;; = 0.
* Entries in each column of M sum to |
0 1/2 1]

* ExampleeM =|1/2 1/2 O
/2 0 0




PageRank: Matrix Formulation

* Rank vector r
* 77 is the importance score of page i
* Entries in 7 sum to |
25
e Example:r = |2/5
1/5]




PageRank: Matrix Formulation

* Equations:
T
* T = Zi_’jd_i
e Matrix form: Mr = r
0 1/2 1] _2/5_ _2/5_

e Example: |1/2 1/2 0| x|2/5|=12/5
1/2 0 0 |[1/5] |1/5)

* PageRank task:

* Given the stochastic adjacency matrix M, we need to
find a rank vector r (whose entries sum to |), so that

Mr =r



Solving Mr = r: Power lteration Method

* (Let’s first assume this algorithm is correct. We will show why it works later.)
* Power lteration: a simple iterative scheme

* Suppose there are N web pages in total

e Initialize: r(®=[1/N, ....,1/N]T

e Iterate: r(¢*D = Mr®

» Stop when ||[r{*D — || <€ (a very small number, e.g,, 0.001)

* If the algorithm stops, we have a good solution (")

« Mr® is very close to r(®
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Example

 Power lteration:

* Initialize: 7= [1/N, ....,1/N]" 0 1/2 1]
e Iterate: r(t+D) = Mr® M=(1/2 1/2 0
1/2 0 O
* Stop when ||r(t+1) — r(t)” <€ : | / ,

O

x 113 (0.33)
y 113 (0.33)
z 113 (0.33)



Example

 Power lteration:

* Initialize: 7(®)= [1/N, ..., 1/N]T 0 1/2 1]
e Iterate: r(t+D) = Mr® M=(1/2 1/2 0
1/2 0 O
* Stop when ||r(t+1) — r(t)” <€ L | / ,

I O TN

x 113 (0.33)  1/2(0.50)
y 113 (0.33)  1/3(0.33)
z 113(0.33)  1/6(0.17)



Example

 Power lteration:

e Initialize: r(®= [1/N, ....,

e Iterate: r(t*t1) = pyr®

» Stop when ||r(t+D)

Z

1/3 (0.33)
1/3 (0.33)
1/3 (0.33)

—rW|| <e

1/2 (0.50)
1/3 (0.33)
116 (0.17)

1/N]7

1/3 (0.33)
5/12 (0.42)
1/4 (0.25)

0

1/2 1]

1/2 1/2 0

1/2 0 0

| 1/24 (0.46)
3/8 (0.38)
116 (0.17)

0.40
0.40
0.20

19



Questions!
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Another Example

 Power lteration:

* Initialize: 7(®)= [1/N, ..., 1/N]T 0 1/2 0
e Iterate: r(t+D) = Mr® M=(1/2 1/2 0

1/2 0 1
* Stop when ||r(t+1) — r(t)” <€ 1/ |

O

X 113 (0.33)
y 113 (0.33)
z 113 (0.33)
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Another Example

 Power lteration:

* Initialize: 7(®)= [1/N, ..., 1/N]T 0 1/2 0
e Iterate: r(t+D) = Mr® M=(1/2 1/2 0

1/2 0 1
 Stop when ||r(t+1) — r(t)” < e 1/ |

All the PageRank scores get “trapped” in node z.

__ Finall

1/3(033)  1/6(0.17)  1/6 (0.17)  1/8(0.13) 0.00
y 1/3(0.33)  1/3(0.33)  1/4(0.25) 5/24 (0.21) 0.00
z 1/3(0.33)  1/2(0.50)  7/12(0.58)  2/3 (0.67) .. .00
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An Even Worse Example

 Power lteration:

e Initialize: 7(Y=[1/N, ..., 1/N]T 0 1 1]
e Iterate: r(t+D) = Mr® M = 1% 8 8
* Stop when ||r(t+1) — r(t)” <€ | | : , e

The algorithm falls into an infinite loop and will not terminate!
Root cause: the graph is bipartite.

I N O N N A T
X /3 2/3 1/3 2/3 ?
y /3 /6 /3 /6 ?
VA /3 /6 /3 /6 ?




Yet Another Even Worse Example

 Power lteration:
e Initialize: r(®=[1/N, ....,1/N]T
¢ lterate: r(t*D) = pp(®

» Stop when [[r(+D) — ]| < ¢

0 0

M=[1 0

All the PageRank scores get “leaked”!
Root cause: the graph has a dead-end node (i.e., no out-links).

I N T I N
X 1/2 0 0 0

y 1/2 1/2 0 0
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Summary of the Challenges

* Spider traps
* All out-links are within the group
* Can have more than one node

* Eventually spider traps absorb all importance

e Dead ends

* The node has no out-links, therefore its importance score
has nowhere to go

* Eventually dead ends cause all importance to “leak out”
* Bipartite graph

* If the graph is bipartite and the two partitions have different
numbers of nodes, the algorithm will not converge.

Dead end

SPider trap

25



PageRank: Google Formulation

Google’s solution for spider traps: Teleportation!

* Each node must contribute a portion of its importance score and distribute it evenly

to all other nodes.

0 1/2 1
Without teleports, M = |1/2 1/2 0
/2 0 0
0 1/2 1
With teleports, M = [ |1/2 1/2 O
/2 0 0

In practice, f§ = 0.8,0.85, or 0.9

+(1-p)

1/3 1/3 1/3]
1/3 1/3 1/3

1/3 1/3 1/3)
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How about dead ends?

* Dead ends must contribute ALL of its importance score and distribute it evenly to all
other nodes.

* Without teleports, M = [(1) 8

, _ [0 1/2 1/2 1/2 @
Without teleports, M = f§ [1 1/2 +(1-p5) [1/2 1/2
* Why do we call this solution “teleportation’?

* Part of the importance score still flows according to the graph's defined
neighborhoods

* While the other part can instantly “teleport” to any node in the graph

27



Why does teleportation solve the problems?

* Spider traps: with traps, PageRank scores are not what we want

* Solution: Never get stuck in a spider trap by teleporting out of it

* Dead ends: the matrix M is no longer column-stochastic (entries in a column may sum
to 0 rather than I)

* Solution: Make M column-stochastic by always teleporting when there is nowhere
else to go

* Wait, how about the bipartite-graph issue!?

* Teleportation makes the graph fully-connected (with different edge weights) and
naturally non-bipartite.

28



PageRank: Google Formulation [Brin and Page, WWW 1998]

 Node-wise form:

; 1
77=/3<Z;—i>+(1—ﬁ)ﬁ

i—jJ

* Note |:Each node i in the graph teleports a score of (1 — [5) %ri to node j, so the total
score node j receives through teleportation is exactly (1 — () %Zi’ri =(1-p5) %

* Note 2:This formulation assumes the graph has no dead ends. If there is a dead end, we
can first link it to all the nodes (include itself).

29



PageRank: Google Formulation [Brin and Page, WWW 1998]

 Matrix form:
1
A=pM+ (1-p)—
N
* Note:1 is an N X N matrix where all entries are |.

* Now we need to solve Ar =1r

* We can still use Power lteration

30



Example (6 = 0.8)

0 1/2 O] (1/3 1/3 1/3]
A=08x|[1/2 1/2 0|+02x|1/3 1/3 1/3
1/2 0 1] 1/3 1/3 1/3
1/15 7/15 1/15 ] s
=17/15 7/15 1/15
7/15 1/15 13/15

2y,

)
__ Finall
0.20 0.20 0.18 0.15
y 1/3 0.33 0.28 0.26 e 0.21

Z 1/3 0.47 0.52 0.56 0.64
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Extended Content
(will not appear in quizzes or the exam)
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Why does Power Iteration work!?

Ar =r

In other words, 1 is an eigenvector of A with the corresponding eigenvalue 4 = 1

Why does A necessarily have an eigenvalue of 1?

* How about other eigenvalues of A?

Perron—Frobenius Theorem: Let A be a square matrix with all entries strictly positive,
and entries in each column sum to 1, then

* A has an eigenvalue of 1

* 1 is the unique “largest” eigenvalue of A.That is, for all other eigenvalues A of A4, we
have || < 1.
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Why does Power Iteration work!?

 Power lteration:
e Initialize: r(®=[1/N, ....,1/N]T

e Iterate: ¥t = A9 ®)

r® = Ar®W = A(4rW) = 4200
r® = A4r@® = A(4%2r®) = 437 ©

* We have a sequence of vectors Ar(®, 42r(® 4370

* We need to prove that this sequence converges to the eigenvector of A with the
eigenvalue 1 = 1



Proof

Let’s assume A has eigenvalues 11,15, ..., Ay, where 1 = 4; > [1,]| = |A3] = -+

The eigenvectors corresponding to A4, 4,, ..., Ay are X, X5, ..., Xy

* Let’s also assume that x4, X,, ..., Xy are linearly independent

* If A4, A5, ..., Ay are different from each other, this assumption always holds.

X1, Xo, ..., Xy form a basis, so we can write r® = C1X1 + CXxy + -+ CyXpy
Ar® = A(cixy + x5 + -+ cyxy)

= c1Ax; + cAx, + -+ cyAxy

= 1 A1 X1 + A x5 + -+ cCyAn Xy

Repeated multiplication on both sides
AZT(O) = Cll’l%xl + Cza%xz + .-+ CN)l,ZVxN

Akr(o) = Clﬂ’fxl ~+ Czalzcxz + -+ CNA%xN

=

|An|
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Proof

Let’s assume A has eigenvalues 14, 1,, ..., Ay, where 1 = 1; > [1,| = |13] = - = |15]

The eigenvectors corresponding to A4, 4,, ..., Ay are X, X5, ..., Xy

Repeated multiplication on both sides

Akr(o) = Clﬂ’fxl + Czalzcxz + -+ CN/’U]S/xN
_ 2\ et ey (M)
—/11 (C1x1+C2 (11) x2+ +CN (/11) xN)
1K k
(A—‘) | = — 0 when k — o (because [1;| < |44])
1
Therefore, A¥r(® - A(cixy + 0+ ---+ 0) = ¢y x4, which is the eigenvector of A with
the eigenvalue A; = 1.

Ai

A1

Note that

Note: This proof does not apply to the case where x4, x5, ..., Xy are NOT linearly independent, which may
happen when A does not have N distinct eigenvalues.
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PageRank: Random Walk Interpretation

* Imagine there is a random web surfer
* At time t, the surfer is on a page i
* At time t + 1, the surfer has two options

* With probability S, it follows an out-link from i uniformly
at random (i.e., ends up on some page j linked from i)

* With probability 1 — f3, it jumps to a random page in the
graph (can be i, j, or any other node)

* The process repeats indefinitely

* Let p(t) be the vector whose i-th coordinate is the probability
that the surfer is at page i at time ¢

* So p(t) is a probability distribution over pages

/
J& /3
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The Stationary Distribution

* Where is the surfer at time ¢t + 1? : ;l \j<
p(t+1)=A4-p(t) Ti/3/k/4
* Suppose the random walk reaches a state J /3

/N
p(t+1)=4-p(t) = p(®) %/ o
/

then p(t) is stationary distribution for the random walk

* The PageRank vector r satisfiesr = A - r

* So r is a stationary distribution for the random walk

~

(A central result from the theory of random walks (Markov processes):

For graphs that satisfy certain conditions (connected and non-bipartite), the
stationary distribution is unique and eventually will be reached no matter
kwhat the initial probability distribution is at time t = 0 y




Back to the Broader Story of Ranking

* With the rise of the
Web, traditional text-
based signals (e.g., TF-
IDF and BM25) may not
be sufficient.

* Many early web search
engines relied on classic
text-based ranking plus
some rudimentary link-
based signals.

Boolean + PageRank results for the
query “university” [Page et al., |999]

Query: university
11 Results Retumed
Showing Results From 0 w0 10

Stanford University Homepage
o hrtpo/iwewrw stanford edw
74.79% W - VTN - TLVMIT

Stanford University: Portfolio Collection
C— hetp i wwrw stanford edwhomefadm inistration/portfolio html
65.78% N - STV - VEVAYT

University of 1llinois at Urbana-Champaign
m— - hrtpliwewew wine edu!
73.26% I3 - IDS0W - JLUYT

Indiana University
= hetp:twww indiana edw
68.38% I - DATRYY - JLUSYT

University of California, Irvine
m— hetp:diwwrw ued edud
68.07% ¥ - ISR - JLVNIT

University of Minnesota
=] heep diwwrw v n edw
67.05% o - INTGYY - QLUMYIT

Iowa State University Homepage
— hetpofiwwrw dastate edw
66.66% N - LVIAY - JLUNYT

The University of Michigan
—— hetpfiwww wmich edw
66.35% Ik - SSYINS - QLVRYT

Mississippi State University
— hetp:www msstate edu/
66.35% N - STVINS - PLVAVT

Northwestern University: NUInfo
—— heep fiwwrw v edw
66.15% M - LYW - DLVSYT

Luoexti0

&

Multi Search [university | Search l Next! [national parks ] s
[ 10 ey T [ CISEINE on T Search i
L= ] I o ptical Physics at the University of Oregon )

Oregon Center for Optics in Science and Technology. Department of
Physics, University of Oregon, Eugene OR 97403, Research Groups:
Carmichael Group....

B ApEth muerrn &ty - vire IR - 18 Dew %

Carnegie Mellon University - Campus Networking
Departments. Data Communications. Data Communications is
responsible for installing and maintaining all on campus networking
equipment and all of. ..
BB N SN ST - ke IR - 19 Agr 95

Computer Science Group. Weslevan University, Welcome to the home
page of the Computer Science Group at Wesleyan University. We are
ad ministratively within.

DOp T T, SRR, A - i K - 15 Apr

Eeio University Shonan Fujisawa Campus (SFC)
B$3$N9%Z IEFnF4E 98- 9%c%e%BQ%9 (B(SFC) $B$N (BWWW $EB%
$BCmOU=q$- (B $BQFI$s$CH$@$S$$ % (B. Nihongo | English.
SFC $B>pJs (B. [ $B%af®Con#9B" 95,997 *. .
BRSNS [ - ke SR -5 Fud 9F

The School of Chemistry. School of Chemistry, University of Sydney,
NESW 2006 Avstralia International Phone: +61-2-9351-4504 Fax:
+61-2-9351-3329 Australia.

LRV BN T 02 I - i TR - 35 Fed 97

Mankato State UUniversity
The Campus Athletics, Campus Tour, Bookstore, Maps, Current
Events... Admission & Registration Admissions, Financial Aid,
Registrar's, Graduvate. ..
Bip eSS N0 I Y - i IR - ST MNor

St. Ambrose University
Main Index: Academic Departments. Administrative Services. Campus
Hews. Computing Services. Galvin Fine Arts Center. Internet
Connections. Library. ..
BTV N ST - i SR - A Fed 97

University of Washington ECSEL Projects hid

Tl

{m =3

|

[=22]

)
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Back to the Broader Story of Ranking

* In practice, we will build a scoring function that considers many features.
* Typically, we have:

* Query-dependent features: e.g., TF-IDF, BM25, # of times a query word occurs in a
document, ...

* Query-independent features: e.g., PageRank, # of in-links to a webpage, popularity of
an album, ...

* Many query-independent features are proxies for “reputation”

* How to jointly consider these features!?
* Week 5
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Thank You!

Course Website: https://yuzhang-teaching.github.io/CSCE670-F25.html
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