

CSCE 670 - Information Storage and Retrieval

Lecture 8: Evaluation (and Quiz 1)

Yu Zhang

yuzhang@tamu.edu

September 18, 2025

Course Website: https://yuzhang-teaching.github.io/CSCE670-F25.html

Recap: Offline Evaluation

• Hypothesis: A new search engine (e.g., based on SuperRank) is better than an old one (e.g., based on BM25)

What we need:

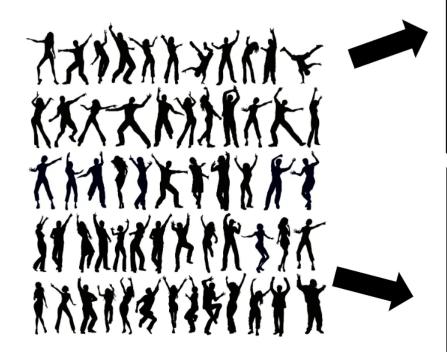
- Documents (representative of our collection),
- Queries (that we hope are representative of what our users will ask), and
- Relevance judgments (can be expensive to collect and noisy)

• Metrics:

- Precision, Recall, FI
- P@k, MAP, NDCG@k

Recap: Online Evaluation

Netflix Members



Compare member behavior

True Merit vs. Randomness

• Can we conclude from this offline test that Algorithm B outperforms Algorithm A?

	NDCG@5	
Algorithm A	0.7000	
Algorithm B	0.7001	

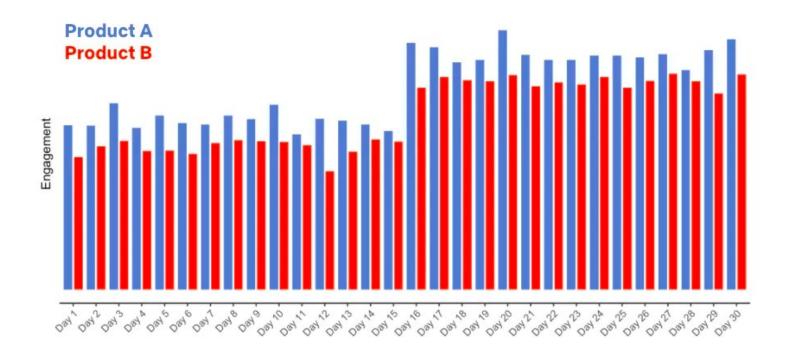
• Can we conclude from this online test that Algorithm B outperforms Algorithm A?

	User Click-Through Rate	
Algorithm A	0.3000	
Algorithm B	0.3100	

We need statistical significance tests!

Statistical Significance Tests for Evaluating a Search Engine

- Step I: Evaluate Algorithms A and B under different experimental conditions
 - Query types (offline)
 - Time of experiment (online)
 - Random seeds (if the algorithm involves randomness)
 - ...



Statistical Significance Tests for Evaluating a Search Engine

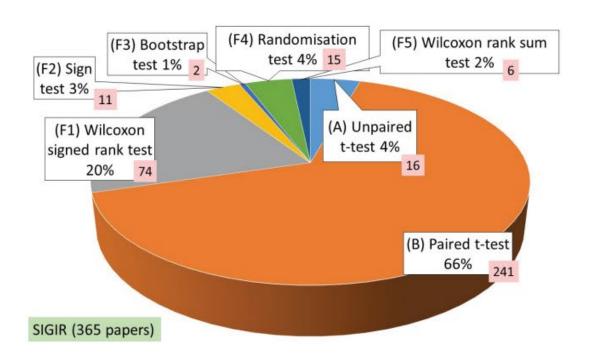
• Step 2: Compare the metrics of Algorithms A and B and examine whether they are likely drawn from different probability distributions

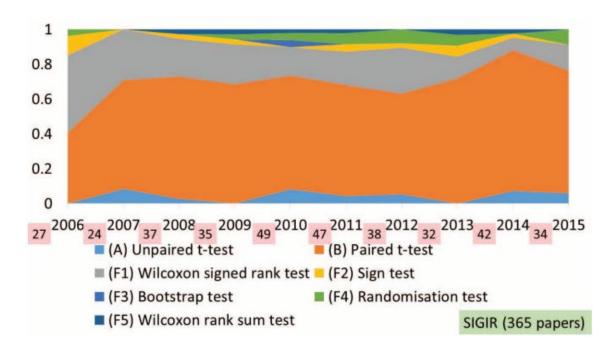
	Algorithm A	Algorithm B	Difference
Condition I	x_1	y_1	$y_1 - x_1$
Condition 2	x_2	y_2	$y_2 - x_2$
•••	•••		•••
Condition N	x_N	\mathcal{Y}_N	$y_N - x_N$

- Null Hypothesis: The case you hope to rule out
 - $\{x_i\}_{i=1}^N$ and $\{y_i\}_{i=1}^N$ are drawn from two distributions with the same mean, OR
 - $\{y_i x_i\}_{i=1}^N$ are drawn from a distribution with mean 0
- Statistical Significance Test: Using probability theory to show that the likelihood of the null hypothesis being true is very small (e.g., < 0.01).

Statistical Significance Tests for Evaluating a Search Engine

- Statistical Significance, Power, and Sample Sizes: A Systematic Review of SIGIR and TOIS, 2006-2015.
 SIGIR 2016.
 - The most commonly used tests in IR: Paired t-test (66%), Wilcoxon signed rank test (20%), and Unpaired t-test (4%)





Paired t-test

- Null Hypothesis: $\{y_i x_i\}_{i=1}^N$ are drawn from a distribution with mean 0
- Step I: Calculate the t-statistic

$$t = \frac{\text{mean of } \{y_i - x_i\}_{i=1}^N}{\left(\text{standard deviation of } \{y_i - x_i\}_{i=1}^N\right)/\sqrt{N}}$$

- Step 2: Calculate the "degrees of freedom": N-1
- Step 3: Look up the t-statistic in a t-distribution table (you need to know N-1 to find the correct row) to obtain the p-value
 - p-value = Prob[the difference between Algorithms A and B is due to randomness]
 - If p-value < 0.05, then Prob[the difference between Algorithms A and B is due to true merit] > 0.95, and we say the difference is statistically significant.

Paired t-test

• We can also do this in Python:

```
☐ Copy 🍪 Edit
python
from scipy.stats import ttest_rel
# Sample data
X = [0.5, 0.4, 0.6, 0.3, 0.2, 0.4, 0.5, 0.3, 0.2, 0.5]
Y = [0.3, 0.2, 0.5, 0.2, 0.1, 0.3, 0.4, 0.2, 0.1, 0.4]
# Calculate t-statistic and p-value
t, p = ttest_rel(X, Y)
# Print p-value
print(p)
```

• In this example, p-value = 8.538e-06

Wilcoxon Signed Rank Test

- Paired t-test assumes that $\{y_i x_i\}_{i=1}^N$ are drawn from a normal distribution
- Wilcoxon signed rank test has a much weaker assumption: $\{y_i x_i\}_{i=1}^N$ are drawn from a symmetric distribution around the mean
- Null Hypothesis: $\{y_i x_i\}_{i=1}^N$ are drawn from a distribution with mean 0
- Example: $\{y_i x_i\}_{i=1}^N = \{0.20, -0.10, 0.30, -0.05\}$
- Step I: Compute $|y_i x_i|$
 - 0.20, 0.10, 0.30, 0.05
- Step 2: Sort these values and assign ranks
 - 0.05 (rank=1), 0.10 (rank=2), 0.20 (rank=3), 0.30 (rank=4)

Wilcoxon Signed Rank Test

- Null Hypothesis: $\{y_i x_i\}_{i=1}^N$ are drawn from a distribution with mean 0
- Example: $\{y_i x_i\}_{i=1}^N = \{0.20, -0.10, 0.30, -0.05\}$
- Step I: Compute $|y_i x_i|$
 - 0.20, 0.10, 0.30, 0.05
- Step 2: Sort these values and assign ranks
 - 0.05 (rank=1), 0.10 (rank=2), 0.20 (rank=3), 0.30 (rank=4)
- Step 3: Calculate the signed-rank sum
 - T = (-1) + (-2) + (+3) + (+4) = 4
 - Intuition: If the Null Hypothesis holds, T should be close to 0.
- Step 4: Look up T in the table to obtain the p-value

Wilcoxon Signed Rank Test

We can also do this in Python:

```
python
from scipy.stats import wilcoxon
# Sample data
X = [0.5, 0.4, 0.6, 0.3, 0.2, 0.4, 0.5, 0.3, 0.2, 0.5]
Y = [0.3, 0.2, 0.5, 0.2, 0.1, 0.3, 0.4, 0.2, 0.1, 0.4]
# Perform Wilcoxon Signed-Rank Test
stat, p = wilcoxon(X, Y)
# Print p-value
print(p)
```

• In this example, p-value = 0.00195

Unpaired t-test

- What if a paired comparison is NOT feasible?
 - E.g., when the two IR models use entirely different architectures with different hyperparameter settings, and we are conducting an offline evaluation
- Null Hypothesis: $\{x_i\}_{i=1}^M$ and $\{y_j\}_{j=1}^N$ are drawn from two distributions with the same mean
- If we can assume the two distributions have the same variance:

$$t = \frac{\bar{x} - \bar{y}}{s_p \sqrt{\frac{1}{M} + \frac{1}{N}}}, \quad \text{where } \bar{x} = \frac{x_1 + \dots + x_M}{M}, \quad \bar{y} = \frac{y_1 + \dots + y_N}{N}$$
and
$$s_p = \sqrt{\frac{(M-1)s_X^2 + (N-1)s_Y^2}{M+N-2}}$$

Unpaired t-test

• If we cannot assume the two distributions have the same variance (Welch's t-test):

$$t = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{s_X^2 + \frac{s_Y^2}{N}}}}, \quad \text{where } \bar{x} = \frac{x_1 + \dots + x_M}{M}, \quad \bar{y} = \frac{y_1 + \dots + y_N}{N}$$

```
python
                                                                                 from scipy.stats import ttest ind
# Sample data
X = [0.5, 0.4, 0.6, 0.3, 0.2, 0.4, 0.5, 0.3, 0.2, 0.5]
Y = [0.3, 0.2, 0.5, 0.2, 0.1, 0.3] # 4 elements removed
# Unpaired t-test (equal variance)
t equal, p equal = ttest ind(X, Y, equal var=True)
# Welch's t-test (unequal variance)
t unequal, p unequal = ttest ind(X, Y, equal var=False)
```

Quiz 1

Thank You!

Course Website: https://yuzhang-teaching.github.io/CSCE670-F25.html