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Ranking should consider multiple factors

* YouTube videos: view, subscribers, video length, user profile factors (e.g., age, location),
title relevance, video quality, recency, ...

* LinkedIn job postings: posting popularity, company popularity, number of openings, skill
match with the user, nearness, recency, salary, ...

* Our record store: record popularity, singer popularity, language, keyword match, ...




Hand-tuning a Ranking Function

* Score(q,d) =
a, X TF-IDF(q, d) +
a, X BM25(q,d) +
a3 X # views in the last day(d) +
a, X # views in the last week(d) +
as X recency(d) +
ag X PageRank(d) +

* After checking some examples, you set a; as 0.5,a, as 0.8, ...

* Problems with this strategy?



Instead, let’s learn a good ranker!

* Rough Idea (not 100% accurately framed): Learn the value of a4, a,, ... from data (e.g.,
relevant query-document pairs according to user clickthrough history)

* A very natural idea (especially these days)

* But it took a while for ML and IR to be good friends
* Wong et al,, Linear structure in information retrieval. SIGIR 1988.
* Fuhr, Probabilistic methods in information retrieval. Computer Journal 1992.
* Gey, Inferring probability of relevance using the method of logistic regression. SIGIR 1994.

* Herbrich et al., Large margin rank boundaries for ordinal regression. Advances in Large
Margin Classifiers 2000.



Background: Text Classification

* Given:
* A document space X
* A fixed set of classes C = {cq, ¢, ... }
* A training set of labeled documents:

¢ Eg, dl — Cq, d2 — Cq, d3 — Co,
* Use a learning algorithm to learn a classifier f that maps documents to classes f: X’ — C

* Examples
* Paper Topic Classification: X = academic papers, C = {math, physics, chemistry, ...}
* Review Sentiment Analysis: X = food reviews, C = {|-star, 2-star, 3-star, 4-star, 5-star}

* Songwriter Prediction: X' = lyrics, C = songwriters



Background: Text Classification

* Training: Use a learning algorithm to
learn a classifier f that maps documents
to classes £ X' — C

training learning
data algorithm

known labels

* Testing/Inference: Given an unseen /N \L

document dqgt test
* Apply our classifier function f(dest) ? |
to determine the most appropriate SRCIPIE

class in C
predicted

label




A Couple of Simple Text Classifiers: Rocchio

* Training:“Learn” class centers for each class by finding the centroid of all the training
examples from each class

* Testing/Inference:Assign a new example to the class of the nearest class center

* Example:
* 2-class classification (chemistry paper vs. history paper)
* Training samples
* chemistry: dy = (1.0,0.9),d, = (0.9,1.0)
* history: d3 = (0.2,0.3),d, = (0.3,0.2)



A Couple of Simple Text Classifiers: Rocchio

* Example:
* 2-class classification (chemistry paper vs. history paper)
* Training samples
* chemistry: dqy = (1.0,0.9),d, = (0.9,1.0)
* history: d3 = (0.2,0.3),d, = (0.3,0.2)

* Step |: Compute class centroids

d,+d,

* chemistry: Cchemistry = = (0.95,0.95)

dz+ds
> =

* history: Chistory = (0.25,0.25)



A Couple of Simple Text Classifiers: Rocchio

* Step |: Compute class centroids

d,+d,

* chemistry: Cchemistry = = (0.95,0.95)

dz+ds
> =

* history: Chistory = (0.25,0.25)

* Step 2: Classify a new document
* New document: ds = (0.8, 0.85)

* Compute Euclidean distance:
* To chemistry: dist(ds, Cchemistry) = +/ (0.8 — 0.95)2+(0.85 — 0.95)% ~ 0.1803
* To history: dist(ds, chistory) = +/ (0.8 — 0.25)2+(0.85 — 0.25)? =~ 0.8124

* ds is closer to chemistry, so we classify it as a chemistry paper.




A Couple of Simple Text Classifiers: Rocchio

* Can you raise an example where Rocchio does NOT work?

A

o© 000
000 00
00 00
Q0 OO
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A Couple of Simple Text Classifiers: k Nearest Neighbors (kKNN)

* Training: None

* Testing/Inference:Assign a new example to the majority class of the k-nearest training
examples

* Example:
* 2-class classification (chemistry paper vs. history paper)
* Training samples
* chemistry:d; = (1.0,0.9),d, = (0.9,1.0),d5 = (0.2,0.3),d, = (0.3,0.2)
* history:ds = (1.0,0.3),ds = (0.9,0.2),d, = (0.3,1.0),dg = (0.2,0.9)
* New document: dg = (0.4, 1.0)
k=3
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A Couple of Simple Text Classifiers: k Nearest Neighbors (kKNN)

new
document

2" nearest neighbor: history 1 O O/ O

Nearest neighbor: history

3rd nearest neighbor: chemistry O O

Majority voting: the new
document has more history
neighbors, so we classify it as a
history paper.
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A Couple of Simple Text Classifiers: k Nearest Neighbors (kKNN)

* Can you raise an example new
where kNN does NOT work? A .~ document
O O O
* How to determine k? What if O O
k=05?

Nearest neighbor: history

2" nearest neighbor: history

3rd nearest neighbor: chemistry

th i . '
4" nearest neighbor: chemistry O O

5t nearest neighbor: chemistry O O
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In practice: Which features?

* Very important to select good features to represent our documents

* Features we know about:
* TF-IDF score of each word (one feature per word)
* PageRank/Hub/Authority score of the document

* Popularity, # of clicks, freshness, ...



In practice: Which classifier?

* Many, many ways to learn a good classifier
* Rocchio

* kNN
Support Vector Machine

Naive Bayes

Decision Tree

Random Forest

Gradient-Boosted Decision Tree



Dataset ﬂ

In practice: How to evaluate? - — -
* Need a way to evaluate how well we do N DU
Training Validation Test
Set Set Set

* Classification accuracy is one way

* For a held-out test set (for which we know the correct labels), calculate how many
labels our classifier correctly predicts

* Many others (some we may talk about later)

* Keep part of the labeled data separate as a validation set
* Train a model over the training data and “test” over the validation set

* Train another model over the training data and “test” over the validation set (and so on
and so on)

* Choose model that minimizes error on the validation set
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Back to Ranking

 Assume we have a test collection:
A benchmark document collection
* A benchmark suite of queries

* A binary assessment of either Relevant or Non-relevant for each query and each
document

* Sounds like classification!

* Classification Training: Given a training set of (query, document — relevance) triples,
learn a model f that outputs Relevant or Non-relevant

* Classification Testing: Given unseen (query, document), apply f(query, document) and
output Relevant or Non-relevant

* NOTE: Now our input is not just a document but both a document and a query!

17



Relevance Classification: Example

term
proximity

/

example docID query cosine score w judgment
P, 37 linux operating system 0.032 3 relevant

P, 37 penguin logo 0.02 4 nonrelevant
P4 238 operating system 0.043 2 relevant

Dy 238 runtime environment 0.004 2 nonrelevant
Ps 1741 kernel layer 0.022 3 relevant

()3 2094 device driver 0.03 2 relevant

P~ 3191 device driver 0.027 5 nonrelevant



Relevance Classification: Example
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Nallapati [SIGIR 2004]

Discriminative Models for Information Retrieval

Ramesh Nallapati
Center for Intelligent Information Retrieval
Department of Computer Science
University of Massachusetts
Amherst, MA 01003

nmramesh@cs.umass.edu

ABSTRACT

Discriminative models have been preferred over generative mod-
els in many machine learning problems in the recent past owing
to some of their attractive theoretical properties. In this paper,
we explore the applicability of discriminative classifiers for IR.
We have compared the performance of two popular discriminative
models, namely the maximum entropy model and support vector
machines with that of language modeling, the state-of-the-art gen-
erative model for IR. Our experiments on ad-hoc retrieval indicate
that although maximum entropy is significantly worse than lan-

. .
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One of the first theoretically motivated IR models is the binary
independence retrieval (BIR) model introduced by Robertson and
Sparck Jones [25] in 1976. To the best of our knowledge, this is the
first model that viewed IR as a classification problem. They con-
sider retrieval as essentially a process of classifying the entire col-
lection of documents into two classes: relevant and non-relevant.
However, instead of doing a hard classification, they estimate the
probability of relevance and non-relevance with respect to the query
and rank the retrieved documents by their log-likelihood ratio of
relevance. Although this was a promising framework, the model
did not perform well because of problems in estimation of proba-
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Nallapati [SIGIR 2004]

* Experiments:
* Comparisons with Lemur (LM), a state-of-the-art open-source IR engine
* Which classifier? SVM with linear kernel
* What features? 6 features, all variants of TF, IDF, and TF-IDF scores

Feature Feature
C
1 ZqieQmD log(c(gi, D)) | 4 ZQiEQmD(log(c(‘lli’g)))

2 | i, log(1+ <452d) |5 | 3o log(1 + U5Rlidf(g:))

3 | Syucqnp loglidf(a:)) | 6 | TSI, log(1 + 2P 10

Figure 2: Features in the discriminative models: c(w, D) rep-
resents the raw count of word w in document D, C represents
the collection, n is the number of terms in the query, |.| is the
size-of function and idf (.) is the inverse document frequency.



Experiments on 4 TREC Datasets

* Metric: Mean Average Precision (MAP)

Train | Test — Disks 1-2 Disk 3 Disks 4-5 WT2G
(151-200) (101-150) (401-450) (426-450)
Disks 1-2 | LM (1™ = 1900) | 0.2561 (6.75e-3) | 0.1842 0.2377 (0.80) 0.2665 (0.61)
(101-150) | SVM 0.2145 0.1877 (0.3) 0.2356 0.2598
ME 0.1513 0.1240 0.1803 0.1815
Disk 3 LM (p* =500) | 0.2605 (1.08e-4) | 0.1785 (0.11) 0.2503 (0.21) 0.2666
(51-100) SVM 0.2064 0.1728 0.2432 0.2750 (0.55)
ME 0.1599 0.1221 0.1719 0.1706
Disks 4-5 | LM (u* =450) | 0.2592 (1.75e-4) | 0.1773 (7.9¢-3) | 0.2516 (0.036) 0.2656
(301-350) | SVM 0.2078 0.1646 0.2355 0.2675 (0.89)
ME 0.1413 0.0978 0.1403 0.1355
WT2G LM (p* =2400) | 0.2524 (4.6e-3) | 0.1838 (0.08) 0.2335 0.2639
(401-425) | SVM 0.2199 0.1744 0.2487 (0.046) 0.2798 (0.037)
ME 0.1353 0.0969 0.1441 0.1432
Best TREC runs 0.4226 N/A 0.3207 N/A
(Site) (UMass) (Queen’s College)
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Experiments on 4 TREC Datasets
* At best the results are about equal to Lemur
* Actually a little bit below

* Paper’s advertisement: Easy to add more features

* This is illustrated on a homepage finding task on WTI0G:

_ Success @0

Lemur 0.52
SVM with text features only 0.58
SVM with URL-depth and in-link
0.78
features
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Questions!
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But Boolean # Ranking!

* Assigning (query, document) to
* Relevant
* or
* Not Relevant

* |s not really what we want when we think about ranking

25



Pointwise Learning

* Assume we have training data like (query, document, score)

* Here the score could be a relevance score like

4 Perfect match

3 Very relevant

2 Relevant

| Somewhat relevant

0 Not relevant at all

* Our goal is to output a score
* This is regression (if we can output any value)

* Or ordinal regression (If we can only output O, I, 2, 3, or 4)

26



Pointwise Learning

* What could be a difference between classification and ordinal regression?

= (W-0(X))

bgl+f f{](}

b,

b1

27



Pointwise Learning

* Regression Training: Given a training set of (query, document — score) triples, learn a
model f

* Regression Testing: Given unseen (query, document), apply f(query, document) and output
the score

* Challenges?
* Expensive to collect labels

* Focuses on scores, not relative ordering (or relationship to other documents)

* Bias towards frequent queries

28



Pairwise Learning

Aim is to classify instance pairs as correctly ranked or incorrectly ranked

* Given the query g and two candidates (c;, ¢y ), predict if ¢; should be ranked higher
than ¢, (denoted as ¢; > ¢y)

This turns an ordinal regression problem back into a binary classification problem in an
expanded space

* We only need lots of (¢;, ¢y ), where we already know ¢; > ¢y, for training

Formally, we want a ranking function f such that
© ¢ > = (W) > (W)
* 1); is the feature vector of ¢; given the query g (e.g., one entry can be TF-IDF(q, c¢;))

To simplify our discussion, let’s suppose that f is a linear function: f(1/;) = w1,



Joachims [KDD 2002]

Optimizing Search Engines using Clickthrough Data

Thorsten Joachims
Cornell University

Department of Computer Science
Ithaca, NY 14853 USA

ti@cs.cornell.edu

ABSTRACT

This paper presents an approach to automatically optimiz-
ing the retrieval quality of search engines using clickthrough
data. Intuitively, a good information retrieval system should
present relevant documents high in the ranking, with less
relevant documents following below. While previous ap-
proaches to learning retrieval functions from examples exist,
they typically require training data generated from relevance
judgments by experts. This makes them difficult and ex-

ceive millions of queries per day, such data is available in
abundance. Compared to explicit feedback data, which is
typically elicited in laborious user studies, any information
that can be extracted from logfiles is virtually free and sub-
stantially more timely.

This paper presents an approach to learning retrieval func-
tions by analyzing which links the users click on in the pre-
sented ranking. This leads to a problem of learning with
preference examples like ”for query q, document d. should
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Training a Linear SVM for Ranking

Should be

Ranking function:
ranked lower

f(:) = w'i;

Should be
ranked higher
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Training a Linear SVM for Ranking

* But we don’t have pointwise training data!

* Remember we only have lots of (¢;, ci), where we already know f(y;) > f(y,)
* We don’t know the value of f(1);) or f(y;)

* |dea: Create a new instance space from pairwise learning
* We have ¢; > ¢, & f(y;) > f(y,)

We also have f(1;) = wly; and f(y,,) = wly,

* Soc; >c, @o@wly, >wly, owl(W, —y,) >0

Let’s create a new instance ¢, = Y; — Yy,

Andz, =+1,0,—1asc¢; >,=< ¢

* From training data § = {¢,, }, we train an SVM

32



Two Queries in the Original Space

A

A rank3

O rank2
R rankl

>
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Two Queries in the Pairwise Space

J(x:w)

Positive

Instances

| +]
O -1
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Performance of Ranking SVM

Comparison more clicks on learned less clicks on learned tie (with clicks) no clicks total
Learned vs. Google 29 13 27 19 38
Learned vs. MSNSearch 18 4 7 11 40
Learned vs. Toprank 21 9 11 11 52

Table 2: Pairwise comparison of the learned retrieval function with Google, MSNSearch, and the non-learning
meta-search ranking. The counts indicate for how many queries a user clicked on more links from the top of
the ranking returned by the respective retrieval function.

weight feature
0.60 query_abstract_cosine
0.48 topl0_google
0.24 query_url_cosine
0.24 toplcount_1
0.24 topl0_msnsearch
0.22 host_citeseer
0.21 domain_nec
0.19 topl0count_3
0.17 topl_google
0.17 country_de
0.16 abstract_contains_home

0.16 topl_hotbot

0.14 domain_name_in_query
-0.13 domain_tu-bs

-0.15 country_fi

-0.16 top50count_4

-0.17 url_length

-0.32 top10count_0

-0.38 toplcount_0

Table 3: Features with largest and smallest weights
as learned from the training data in the online ex-

eriment.
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Questions!
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Burges et al. [ICML 2005] (RankNet)

Learning to Rank using Gradient Descent

Keywords: ranking, gradient descent, neural networks, probabilistic cost functions, internet search

Chris Burges CBURGES@QMICROSOFT.COM
Tal Shaked™ TAL.SHAKEDQGMAIL.COM
Erin Renshaw ERINREN@MICROSOFT.COM

Microsoft Research, One Microsoft Way, Redmond, WA 98052-6399

Ari Lazier ARIEL@MICROSOFT.COM
Matt Deeds MADEEDS@MICROSOFT.COM
Nicole Hamilton NICHAM@MICROSOFT.COM
Greg Hullender GREGHULLQMICROSOFT.COM

Microsoft, One Microsoft Way, Redmond, WA 98052-6399

Abstract that maps to the reals (having the model evaluate on
pairs would be prohibitively slow for many applica-
tions). However (Herbrich et al., 2000) cast the rank

11 1

We investigate using gradient descent meth-
ods for learning ranking functions; we pro-

11 1
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Burges et al. [ICML 2005] (RankNet)

* Led to popular and successful variants:
* LambdaRank
* LambdaMART: top performer at the 2010 Yahoo Learning to Rank Challenge

JMLR: Workshop and Conference Proceedings 14 (2011) 1-24 Yahoo! Learning to Rank Challenge

Yahoo! Learning to Rank Challenge Overview

Olivier Chapelle* CHAPQYAHOO-INC.COM
Yi Chang YICHANG@YAHOO-INC.COM
Yahoo! Labs

Sunnyvale, CA
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Existing Public Datasets

Table 1: Characteristics of publicly available datasets for learning to rank: number of
queries, documents, relevance levels, features and year of release.
the 6 datasets for the ’.gov’ collection in LETOR have been added together. Even
though this collection has a fairly large number of documents, only 2000 of them

are relevant.

The size of

Queries Doc. Rel. Feat. Year
LETOR 3.0 — Gov 575 568k 2 64 2008
LETOR 3.0 — Ohsumed 106 16k 3 45 2008
LETOR 4.0 2,476 8%k 3 46 2009
Yandex 20,267 213k 5 245 2009
Yahoo! 36,251 883k 5 700 2010
Microsoft 31,631 3,771k 5 136 2010
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Datasets for the Challenge

Table 2: Statistics of the two datasets released for the challenge.

SET 1 SET 2
Train  Valid. Test | Train Valid. Test
Queries 19,944 2,994 6,983 | 1,266 1,266 3,798
Documents 473,134 71,083 165,660 | 34,815 34,881 103,174

Features

519

596

Table 3: Distribution of relevance labels.

Grade Label | SET 1 SET 2
Perfect 4 1.67%  1.89%
Excellent 3 3.88% 7.6™%
Good 2 22.30% 28.55%
Fair 1 50.22% 35.80%
Bad 0 21.92% 26.09%
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Features

Web graph: in-links, out-links, PageRank, ...

Doc statistics: # of words in title, # of words in body, number of slashes in URL, ...
Doc classifier: spam, topic, language, ...

Query: # of terms, frequency of query and its termes, ...

Text match: BM25, counts, ...

Clicks: probability of a click, dwell time, ...

External references: tags

Time: age of doc, age of in-links, ...
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Baselines

Table 5: Performance of the 3 baselines methods on the validation and test sets of SET 1:
BM25F-SD is a text match feature, RankSVM is linear pairwise learning to rank
method and GBDT is a non-linear regression technique.

Validation Test
ERR NDCG ERR NDCG
BM25F-SD | 0.42598 0.73231 | 0.42853 0.73214
RankSVM | 0.43109 0.75156 | 0.43680 0.75924
GBDT 0.45625 0.78608 | 0.46201 0.79013




The Winners

Track 1

RankNet 1

QT

C. Burges, K. Svore, O. Dekel, Q. Wu, P. Bennett,
A. Pastusiak and J. Platt (Microsoft Research)
E. Gottschalk (Activision Blizzard) and D. Vogel
(Data Mining Solutions)

M. Parakhin (Microsoft) — Prize declined

D. Pavlov and C. Brunk (Yandex Labs)

D. Sorokina (Yandex Labs)

* What is RankNet? Next lecture!

0.46861
0.46786
0.46695

0.46678
0.46616
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Thank You!

Course Website: https://yuzhang-teaching.github.io/CSCE670-F25.html
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