
Fine-Tuning LLaMA for Multi-Stage Text Retrieval
Xueguang Ma∗

University of Waterloo
Waterloo, Canada

x93ma@uwaterloo.ca

Liang Wang
Microsoft Research Asia

Beijing, China
wangliang@microsoft.com

Nan Yang
Microsoft Research Asia

Beijing, China
nanya@microsoft.com

Furu Wei
Microsoft Research Asia

Beijing, China
fuwei@microsoft.com

Jimmy Lin
University of Waterloo

Waterloo, Canada
jimmylin@uwaterloo.ca

ABSTRACT
While large language models (LLMs) have shown impressive NLP
capabilities, existing IR applications mainly focus on prompting
LLMs to generate query expansions or generating permutations
for listwise reranking. In this study, we leverage LLMs directly to
serve as components in the widely used multi-stage text ranking
pipeline. Specifically, we fine-tune the open-source LLaMA-2 model
as a dense retriever (repLLaMA) and a pointwise reranker (rank-
LLaMA). This is performed for both passage and document retrieval
tasks using the MS MARCO training data. Our study shows that fine-
tuned LLM retrieval models outperform smaller models. They are
more effective and exhibit greater generalizability, requiring only
a straightforward training strategy. Moreover, our pipeline allows
for the fine-tuning of LLMs at each stage of a multi-stage retrieval
pipeline. This demonstrates the strong potential for optimizing
LLMs to enhance a variety of retrieval tasks. Furthermore, as LLMs
are naturally pre-trained with longer contexts, they can directly
represent longer documents. This eliminates the need for heuristic
segmenting and pooling strategies to rank long documents. On
the MS MARCO and BEIR datasets, our repLLaMA–rankLLaMA
pipeline demonstrates a high level of effectiveness.

CCS CONCEPTS
• Information systems → Retrieval models and ranking.

KEYWORDS
Large Language Model, Dense Retrieval, Reranker

ACM Reference Format:
Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, and Jimmy Lin. 2024.
Fine-Tuning LLaMA for Multi-Stage Text Retrieval. In Proceedings of the
47th International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR ’24), July 14–18, 2024, Washington, DC, USA.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3626772.3657951

∗Work done during Xueguang’s internship at MSRA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR ’24, July 14–18, 2024, Washington, DC, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0431-4/24/07
https://doi.org/10.1145/3626772.3657951

1 INTRODUCTION
Text retrieval is crucial in various natural language comprehension
tasks [25], including web search [1], open-domain question answer-
ing [2], and fact verification [34]. Retrieval also plays an important
role in enhancing the effectiveness of large language models (LLMs)
in a retrieval-augmented generation (RAG) pipeline [15, 31]. This
approach not only mitigates hallucinations but also enables LLMs
to access external knowledge [12, 42].

A typical multi-stage text retrieval pipeline consists of a retriever,
designed to efficiently locate the top-𝑘 relevant texts from a (poten-
tially large) corpus, and a reranker, which further refines the order
of the retrieved candidates to improve output quality [22]. Both re-
trievers and rerankers have significantly benefited from the advent
of pre-trained language models based on Transformers [37] such as
BERT [7] and T5 [30]. These models are fine-tuned to encode queries
and documents into vector representations for retrieval [13, 16] or
to directly score the relevance between a query and a document for
reranking [23]. Several solutions have been introduced to enhance
the effectiveness of retrievers and rerankers with improved data
creation or training strategies [9, 29, 38, 40, 41, 44].

Recent LLMs with billions of parameters such as GPT-4 [24] and
LLaMA [35, 36] have exhibited extraordinary capabilities in many
NLP tasks, surpassing previous smaller models [43]. For retrieval,
recent methods such as RankGPT [32], LRL [18], and PRP [28]
have explored prompting LLMs to perform zero-shot listwise or
pairwise ranking as text generation tasks. Work such as HyDE [10]
and Query2Doc [39] have used LLMs to augment user queries.
These methods rely on the strong generative capabilities of LLMs.
However, we see a few potential issues. First, these methods do not
address the entire multi-stage pipeline, as it is challenging to cast
first-stage retrieval as text generation. Second, they do not leverage
labeled data when available. Finally, prompting-based rerankers are
not efficient because they do not support parallel scoring; also, their
multi-pass decoding design and sliding window strategy [18, 32]
present efficiency bottlenecks.

Therefore, we argue that fine-tuning state-of-the-art LLMs to
function as retrievers and rerankers in multi-stage pipelines can
yield better effectiveness than older, smaller models. Previous work
such as GTR [21], SGPT [19], and cpt-text [20] discussed fine-tuning
language models with billions of parameters to generate dense em-
beddings. However, LLaMA has demonstrated even better effec-
tiveness on natural language generation tasks than previous open-
source models, suggesting that it might serve as a better backbone

2421

https://doi.org/10.1145/3626772.3657951
https://doi.org/10.1145/3626772.3657951
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626772.3657951&domain=pdf&date_stamp=2024-07-11

SIGIR ’24, July 14–18, 2024, Washington, DC, USA Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, & Jimmy Lin

and warranting further exploration. Additionally, none of the mod-
els referenced above are fully optimized for a multi-stage retrieval
pipeline. Thus, we investigate the following research question: How
do state-of-the-art LLMs perform when specifically fine-tuned for
multi-stage text retrieval?

Our study answers this question by conducting a comprehen-
sive investigation into fine-tuning LLaMA-2 [35] as both a dense
retriever and a pointwise reranker, which we refer to as repLLaMA
and rankLLaMA, respectively. We find that LLMs surpass previ-
ous smaller models in terms of effectiveness for both retrieval and
reranking using only a straightforward training regime and exhibit-
ing strong zero-shot effectiveness. Compared to methods that di-
rectly prompt large language models to generate permutations [32],
fine-tuning large language models as rerankers can be more ef-
fective due to the use of labeled data and be more efficient due to
decoupled parallel inference. Furthermore, we observe that LLMs,
which are inherently pre-trained on longer contexts, are capable of
representing entire documents, thereby eliminating the need for
segmenting and pooling strategies for document retrieval.

2 METHOD
2.1 Retriever
Our retriever model, called repLLaMA, follows the bi-encoder ar-
chitecture proposed in DPR [13], but with the backbone model ini-
tialized with LLaMA. In contrast to previous dense retriever models
based on BERT, which take the representation of the prepended
[CLS] token as the representation of the text input, repLLaMA
computes the vector embedding of a query or a document as:

𝑉𝑇 = Decoder(‘𝑡1␣𝑡2␣...␣𝑡𝑘 ’) [−1]

where Decoder(·) represents the LLaMA model, which returns the
last layer token representation for each input token. As the attention
mechanism of LLaMA is uni-directional, we take the representation
of the last token as the representation of the input sequence 𝑡1 . . . 𝑡𝑘 ,
either a query 𝑄 or a document 𝐷 .

Relevance of 𝐷 to 𝑄 is computed in terms of the dot prod-
uct of their corresponding dense representations 𝑉𝑄 and 𝑉𝐷 as
Sim(𝑄,𝐷) =< 𝑉𝑄 ,𝑉𝐷 >. The model is then optimized end-to-end
according to InfoNCE loss with a set of negative documents that in-
cludes both hard negatives, which are sampled from the top-ranking
results of an existing retrieval system, and in-batch negatives, which
are derived from the positive documents and hard negative docu-
ments associated with other queries in the same training batch. In
practice, dense retrieval training tends to benefit from a larger set
of hard negatives and in-batch negatives.

2.2 Reranker
Our rankLLaMA reranker model is trained as a pointwise reranker.
This approach involves passing a query and a candidate document
together as model input, with the model generating a score that
indicates the relevance of the document to the query [23]. In more
detail, rankLLaMA reranks a query–document pair as follows:

input = ‘query: {𝑄} document: {𝐷}’
Sim(𝑄, 𝐷) = Linear(Decoder(input) [−1])

where Linear(·) is a linear projection layer that projects the last
layer representation of the last token to a scalar. Similar to the
retriever, the model is optimized by contrastive loss, but, in this
case, the negative documents do not involve in-batch negatives.

To train a reranker that is optimized to rerank candidates from
a specific retriever in a multi-stage pipeline, hard negatives should
be sampled from the top-ranking results from that retriever. Specif-
ically, in our case, the hard negative training data for rankLLaMA
are selected from the top-ranking results of repLLaMA.

3 EXPERIMENTS
3.1 Passage Retrieval
3.1.1 Dataset. We train our retriever and reranker models with
LLaMA-2 on the training split of MS MARCO passage [1]. As dis-
cussed in Section 2.1, the use of hard negatives is crucial for effective
training. We use a blend of BM25 and CoCondenser [9] hard nega-
tives to ensure that the hard negatives are derived from both sparse
and dense retrieval results, thereby enhancing the diversity of the
samples. For the reranker, we select the hard negatives from the
top-200 candidates generated by the retriever.

We evaluate the effectiveness of our models using the develop-
ment split of the MS MARCO passage ranking task and the TREC
DL19/DL20 passage ranking tasks [3, 4]. Following standard prac-
tice, we adopt MRR@10 and nDCG@10 as the evaluation metrics.
In addition, we assess the zero-shot effectiveness of repLLaMA and
rankLLaMA on the 13 publicly available datasets of BEIR [33].

3.1.2 Implementation Details. We initialize our models with the
LLaMA-2-7B checkpoint1 and train on 16 × 32G V100 GPUs. For
repLLaMA, we append an end-of-sequence token </s> to the in-
put sequence and take its final layer representation as the dense
representation (4096 dimensions). Additionally, we normalize these
dense representations into unit vectors during both the training
and inference stages, ensuring that their L2-norms are equal to 1.
After encoding the entire corpus, we end up with a 135G flat index
for brute-force search.

For rankLLaMA, we find that appending </s> to the input se-
quence causes loss overflow error when fine-tuning LLaMA-2 with
16-bit floating point precision. Thus, we use the final layer repre-
sentation of the last token in the passage to calculate the similarity
score. A challenge in fine-tuning LLMs for retrieval is the high
GPU memory costs associated with contrastive learning, as it re-
quires large batch sizes for in-batch negatives. To address this, we
employ recently proposed solutions, including LoRA [11], flash
attention [6], and gradient checkpointing to reduce GPU memory
usage. Both the retriever and reranker are trained with a batch size
of 128, with 15 hard negative passages sampled for each query. At
inference time, repLLaMA retrieves the top-1000 passages from the
corpus and rankLLaMA reranks the top-200 passages retrieved by
repLLaMA. To explore whether increases in model size can further
improve effectiveness, we also train a version of rankLLaMA using
LLaMA-2-13B as the model initialization.2

3.1.3 In-Domain Evaluation. As shown in Table 1, repLLaMA out-
performs all competing methods for retrieval, achieving the highest
1https://huggingface.co/meta-llama/Llama-2-7b-hf
2https://huggingface.co/meta-llama/Llama-2-13b-hf

2422

https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-13b-hf

Fine-Tuning LLaMA for Multi-Stage Text Retrieval SIGIR ’24, July 14–18, 2024, Washington, DC, USA

Model Source Dev DL19 DL20
size prev. top-𝑘 MRR@10 nDCG@10 nDCG@10

Retrieval
(a) BM25 [17] - - |𝐶 | 18.4 50.6 48.0
(b) ANCE [41] 125M - |𝐶 | 33.0 64.5 64.6
(c) CoCondenser [9] 110M - |𝐶 | 38.2 71.7 68.4
(d) GTR-base [21] 110M - |𝐶 | 36.6 - -
(e) GTR-XXL [21] 4.8B - |𝐶 | 38.8 - -
(f) OpenAI Ada2 [20] ? - |𝐶 | 34.4 70.4 67.6
(g) bi-SimLM [38] 110M - |𝐶 | 39.1 69.8 69.2
(h) repLLaMA 7B - |𝐶 | 41.2 74.3 72.1

Reranking
(i) monoBERT [23] 110M (a) 1000 37.2 72.3 72.2
(j) cross-SimLM [38] 110M (g) 200 43.7 74.6 72.7
(k) RankT5 [44] 220M (d) 1000 43.4 - -
(l) rankLLaMA 7B (h) 200 44.9 75.6 77.4
(m) rankLLaMA-13B 13B (h) 200 45.2 76.0 77.9

(n) RankVicuna [27] 7B (a) 100 - 66.8 65.5
(o) PRP [28] 20B (a) 100 - 72.7 70.5
(p) RankGPT3.5 [32] ? (a) 100 - 65.8 72.9
(q) RankGPT4 [32] ? (p) 30 - 75.6 70.6

Table 1: The effectiveness of repLLaMA and rankLLaMA on
the MS MARCO passage corpus compared to baselines.

Method Model Size BEIR-13 Avg.

BM25 [17] - 43.7
GTR-XXL [21] 4.8B 49.3
Ada2 [20] ? 52.1
SGPT [19] 5.8B 52.1
repLLaMA 7B 55.1

RankT5 [44] 220M 53.7
rankLLaMA 7B 56.6
rankLLaMA-13B 13B 56.5

Table 2: Zero-shot effectiveness of repLLaMA and rank-
LLaMA on BEIR datasets.

effectiveness. Compared to GTR-XXL, which also uses a model with
billions of parameters based on the T5-encoder [21], our model
achieves 2.4 points higher MRR@10 on the dev queries.

For reranking, rankLLaMA reranks the top-200 passages from
repLLaMA, resulting in the highest end-to-end effectiveness of
any multi-stage retrieval system that we are aware of. Our com-
plete repLLaMA–rankLLaMA pipeline beats (to our knowledge)
the previous state-of-the-art reranker, RankT5 [44]. Furthermore,
our rankLLaMA-13B model outperforms the 7B model, achieving
slightly higher effectiveness. Compared to RankGPT4 [32], which
prompts GPT-4 to perform passage reranking through permutation
generation within a multi-stage retrieval pipeline, our repLLaMA–
rankLLaMA combination achieves higher nDCG@10 scores on both
DL19 and DL20. As a pointwise reranker, rankLLaMA can rerank
candidate passages in parallel, which means that inference can
be accelerated to reduce latency as compared to RankGPT, which
depends on a sequential sliding-window strategy to rerank.

3.1.4 Zero-Shot Evaluation. Results on the BEIR datasets are pre-
sented in Table 2. Both our models demonstrate superior zero-shot
effectiveness, outperforming existing models. repLLaMA surpasses

Source Seg. Dev DL19 DL20
prev. top-𝑘 Y/N MRR@100 nDCG@10 nDCG@10

Retrieval
(a) BM25 [17] - |𝐶 | N 23.0 51.8 52.9
(b) BM25-Q2D [26] - |𝐶 | Y 31.8 61.2 59.6
(c) CoCondenser [9] - |𝐶 | Y 42.5 64.8 64.0
(d) repLLaMA - |𝐶 | N 45.6 65.0 63.2

Reranking
(e) monoT5 [26] (b) 10000 Y 41.1 - -
(f) MORES+ [8] (c) 100 Y 49.3 - -
(g) rankLLaMA (d) 100 N 50.3 67.7 67.4

Table 3: The effectiveness of repLLaMA and rankLLaMA on
the MS MARCO document corpus compared to baselines.

other existing dense retrievers with billions of parameters. Specif-
ically, it outperforms SGPT and Ada2 as well as GTR-XXL. Note
that Ada2 and GTR-XXL require an unsupervised contrastive pre-
training stage before the supervised fine-tuning. In contrast, rep-
LLaMA uses the base pre-trained model as initialization, achieving
the highest zero-shot effectiveness we are aware of while main-
taining simplicity. rankLLaMA-7B further enhances the retriever’s
effectiveness when reranking the top-100 retrieval results from rep-
LLaMA, but interestingly, the larger rankLLaMA-13B model does
not appear to yield any further improvements.

3.2 Document Retrieval
3.2.1 Dataset. Document retrieval presents the challenge of han-
dling long input sequences [1]; for example, the MS MARCO docu-
ment ranking corpus has an average document length of around
1500 tokens. Notably, only 24% of the documents have fewer than
512 tokens, which is the maximum input length for most previous
rankers based on smaller pre-trained language models [7].

The standard solution to manage long sequences for retrieval
is the MaxP strategy [5], which involves dividing the document
into segments and determining the document score based on the
segment with the highest score. However, this involves a heuristic
pooling strategy and runs the risk of losing information distributed
across long contexts. Recent language models pre-trained on longer
sequences (e.g., 4096 tokens for LLaMA-2) enable us to represent
longer texts “in one go”, eliminating the need for segmentation.

3.2.2 Implementation Details. By default we allow the retriever
and reranker to take the first 2048 tokens as input without any
segmentation, which is a reasonable trade-off between input se-
quence length and the cost of training. This approach covers about
77% of the documents in the corpus entirely. We create the train-
ing data for the document retriever and reranker models based
on the 300k training examples in the training set. Similar to the
approach for passage ranking, we sample the hard negative doc-
uments to train repLLaMA from the top-100 hard negatives from
BM25 and our implementation of CoCondenser on the MS MARCO
document retrieval training data. Here, BM25 directly indexes the
complete documents, while CoCondenser retrieves documents us-
ing the aforementioned MaxP strategy. The hard negatives for
rankLLaMA are selected from the top-100 results of repLLaMA.

We follow a similar setup as in the passage ranking task to
train both document repLLaMA and rankLLaMA, with the same

2423

SIGIR ’24, July 14–18, 2024, Washington, DC, USA Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, & Jimmy Lin

Train Dev DL19 DL20
MRR@10 MRR@10 nDCG@10 nDCG@10

FT 46.6 41.6 72.8 69.9
LoRA 40.8 41.2 74.3 72.1

Table 4: Comparison between full fine-tuning (FT) and LoRA
when training repLLaMA for the passage retrieval task.

4096* 4096 2048 1024 768 512 256

MS PSG Dev (MRR@10) 41.2 41.2 41.0 40.4 40.4 39.9 38.7
BEIR-13 Avg (nDCG@10) 55.1 55.0 54.6 53.8 53.5 52.6 50.3

Table 5: Comparison of passage ranking effectiveness varying
vector dimensionality. 4096∗ is the effectiveness of default
repLLaMA; other results are from the MRL [14] variant.

Retriever MRR@10 → Reranker MRR@10

BM25 18.4 monoT5-3B 39.8
rankLLaMA-7B 42.8

GTR 36.6 RankT5-3B 43.8
rankLLaMA-7B 44.8

repLLaMA 41.2 rankLLaMA-7B 44.9

Table 6: Comparison of passage reranking for rankLLaMA
when reranking different top-1000 retriever outputs.

computing resources. For the MS MARCO document corpus, this
results in a 49G (flat) index after encoding the entire corpus.

3.2.3 Results. Table 3 reports the effectiveness of our repLLaMA–
rankLLaMA pipeline for full-document retrieval on the MS MARCO
document corpus. We see that both our retriever and reranker
outperform existing methods. repLLaMA achieves an MRR@100
score that is about 3 points higher than CoCondenser, while rank-
LLaMA exceeds (to our knowledge) the current state-of-the-art
document reranker, MORES+ [8], by 1 point in MRR@100.

4 ABLATIONS AND ANALYSES
Full Fine-Tuning vs. LoRA. When fine-tuning LLMs, a key deci-

sion is whether to perform “full” fine-tuning or to use a parameter-
efficient method such as LoRA. Table 4 compares the effectiveness
of these two approaches on repLLaMA for the passage retrieval task.
We see that full fine-tuning achieves a much higher MRR@10 score
than LoRA on the training set; however, this improvement does not
translate over to the development set. Interestingly, on the TREC
DL19/DL20 datasets, which are derived from independent human
judgments, LoRA demonstrates better effectiveness. This suggests
that full fine-tuning may be prone to overfitting on the training set
distribution, while LoRA, with significantly fewer parameters, can
generalizable better. For this reason, all the models presented in
our main experiments (Section 3) use LoRA.

Representation Dimensionality. By default, repLLaMA generates
4096 dimensional vectors. We trained a variant of repLLaMA fol-
lowing the Matryoshka Representation Learning (MRL) training
strategy [14], which enables repLLaMA to generate representations
with flexible dimensionality. As shown in Table 5, the effectiveness
of repLLaMA decreases with smaller vectors, but the effectiveness

1000 2000 3000 4000
Input Length

45

46

47

48

49

50

M
R

R
@

10
0

512
2048
4096

Figure 1: Comparison of document rankingMRR@100 scores
for rankLLaMAwith different maximum input lengths. Each
line represents a model trained with a specific maximum
length, while points along the line indicate the effectiveness
when varying the input length during inference (reranking).

is largely preserved, especially for in-domain evaluation. We ob-
serve gradual degradation of effectiveness on BEIR, indicating that
repLLaMA has the flexibility to adapt to constrained vector sizes.

Reranking Candidates. In Table 6, we show the effectiveness of
using rankLLaMA to rerank candidate from retrievers other than
repLLaMA. To match the original setting of monoT5 and RankT5,
we rerank the top-1000 retriever outputs. Our rankLLaMA out-
performs both monoT5 and RankT5 “out of the box”, showing the
effectiveness of rankLLaMA without relying on repLLaMA.

Input Sequence Length. We investigate the effects of varying
the maximum training input length and inference input length
on model effectiveness for the document reranking task. Results
presented in Figure 1 show a clear trend: the effectiveness of rank-
LLaMA improves as the maximum training length increases from
512 to 2048, with the MRR@100 score improving from 48.5 to 50.3.
When the reranking input length is further increased to 4096, the
MRR@100 score rises to 50.6. This demonstrates the model’s ability
to exploit longer sequences for improved effectiveness.

However, we note that the gains plateau beyond a certain length,
suggesting a point of diminishing returns. The MRR@100 for the
model trained with a length of 4096 is only 0.3 points higher than
the model trained with a length of 2048, when evaluated on input
lengths that match their training lengths. Moreover, the model
trained with a length of 4096 takes about 8 days to train using
16 × V100 GPUs, while the model with a length of 2048 takes
about 4 days. The same relative latency costs apply to inference as
well. Therefore, while rankLLaMA can handle much longer input
documents, it is crucial to balance this capability with the practical
considerations of computational efficiency.

5 CONCLUSION
Our study shows that large language models (LLMs) can be ef-
fectively fine-tuned to function as dense retrievers and pointwise
rerankers, establishing a point of reference for future multi-stage re-
trieval systems. This approach surpasses the effectiveness of smaller
models, handles longer texts, and highlights the potential for en-
hancing text retrieval with LLMs.

2424

Fine-Tuning LLaMA for Multi-Stage Text Retrieval SIGIR ’24, July 14–18, 2024, Washington, DC, USA

REFERENCES
[1] Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu,

Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosen-
berg, Xia Song, Alina Stoica, Saurabh Tiwary, and Tong Wang. 2016. MS MARCO:
A Human Generated MAchine Reading COmprehension Dataset. arXiv:1611.09268
(2016).

[2] Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. 2017. Reading
Wikipedia to Answer Open-Domain Questions. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
1870–1879.

[3] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, and Daniel Campos. 2021. Overview
of the TREC 2020 Deep Learning Track. arXiv:2102.07662 (2021).

[4] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M.
Voorhees. 2020. Overview of the TREC 2019 Deep Learning Track.
arXiv:2003.07820 (2020).

[5] Zhuyun Dai and Jamie Callan. 2019. Deeper Text Understanding for IR with
Contextual Neural Language Modeling. In Proceedings of the 42nd International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR’19). 985–988.

[6] Tri Dao. 2023. FlashAttention-2: Faster Attention with Better Parallelism and
Work Partitioning. arXiv:2307.08691 (2023).

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). 4171–4186.

[8] Luyu Gao and Jamie Callan. 2022. Long Document Re-Ranking with Modular
Re-Ranker. In Proceedings of the 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR ’22). 2371–2376.

[9] Luyu Gao and Jamie Callan. 2022. Unsupervised Corpus Aware Language Model
Pre-training for Dense Passage Retrieval. In Proceedings of the 60th AnnualMeeting
of the Association for Computational Linguistics (Volume 1: Long Papers). 2843–
2853.

[10] Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan. 2023. Precise Zero-Shot
Dense Retrieval without Relevance Labels. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
1762–1777.

[11] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2022. LoRA: Low-Rank Adaptation of Large
Language Models. In International Conference on Learning Representations.

[12] Zhengbao Jiang, Frank F. Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-
Yu, Yiming Yang, Jamie Callan, and Graham Neubig. 2023. Active Retrieval
Augmented Generation. arXiv:2305.06983 (2023).

[13] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval for Open-
Domain Question Answering. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP). 6769–6781.

[14] Aditya Kusupati, Gantavya Bhatt, Aniket Rege, Matthew Wallingford, Aditya
Sinha, Vivek Ramanujan, William Howard-Snyder, Kaifeng Chen, Sham Kakade,
Prateek Jain, and Ali Farhadi. 2022. Matryoshka Representation Learning. In
Advances in Neural Information Processing Systems.

[15] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel,
Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-Augmented Generation for
Knowledge-Intensive NLP Tasks. In Advances in Neural Information Processing
Systems. 9459–9474.

[16] Jimmy Lin. 2021. A Proposed Conceptual Framework for a Representational
Approach to Information Retrieval. arXiv:2110.01529 (2021).

[17] Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-Hong Yang, Ronak Pradeep,
and Rodrigo Nogueira. 2021. Pyserini: A Python Toolkit for Reproducible Infor-
mation Retrieval Research with Sparse and Dense Representations. In Proceedings
of the 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR ’21). 2356–2362.

[18] Xueguang Ma, Xinyu Crystina Zhang, Ronak Pradeep, and Jimmy Lin. 2023.
Zero-Shot Listwise Document Reranking with a Large Language Model.
arXiv:2305.02156 (2023).

[19] Niklas Muennighoff. 2022. SGPT: GPT Sentence Embeddings for Semantic Search.
arXiv:2202.08904 (2022).

[20] Arvind Neelakantan et al. 2022. Text and Code Embeddings by Contrastive
Pre-Training. arXiv:2201.10005 (2022).

[21] Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo Hernandez Abrego, Ji Ma,
Vincent Zhao, Yi Luan, Keith Hall, Ming-Wei Chang, and Yinfei Yang. 2022. Large
Dual Encoders Are Generalizable Retrievers. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing. 9844–9855.

[22] Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage Re-ranking with BERT.
arXiv:1901.04085 (2019).

[23] Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and Jimmy Lin. 2019. Multi-Stage
Document Ranking with BERT. arXiv:1910.14424 (2019).

[24] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 (2023).
[25] Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick Lewis, Majid Yazdani,

Nicola De Cao, James Thorne, Yacine Jernite, Vladimir Karpukhin, Jean Mail-
lard, Vassilis Plachouras, Tim Rocktäschel, and Sebastian Riedel. 2021. KILT: a
Benchmark for Knowledge Intensive Language Tasks. In Proceedings of the 2021
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. 2523–2544.

[26] Ronak Pradeep, Rodrigo Nogueira, and Jimmy Lin. 2021. The Expando-Mono-
Duo Design Pattern for Text Ranking with Pretrained Sequence-to-Sequence
Models. arXiv:2101.05667 (2021).

[27] Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy Lin. 2023. RankVicuna:
Zero-Shot Listwise Document Reranking with Open-Source Large Language
Models. arXiv:2309.15088 (2023).

[28] Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang, Junru Wu, Jiaming Shen,
Tianqi Liu, Jialu Liu, Donald Metzler, Xuanhui Wang, and Michael Bendersky.
2023. Large Language Models are Effective Text Rankers with Pairwise Ranking
Prompting. arXiv:2306.17563 (2023).

[29] Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang Ren, Wayne Xin Zhao, Daxi-
ang Dong, Hua Wu, and Haifeng Wang. 2021. RocketQA: An Optimized Training
Approach to Dense Passage Retrieval for Open-Domain Question Answering. In
Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. 5835–5847.

[30] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. Journal of
Machine Learning Research 21, 140 (2020), 1–67.

[31] Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Rich James, Mike
Lewis, Luke Zettlemoyer, and Wen tau Yih. 2023. REPLUG: Retrieval-Augmented
Black-Box Language Models. arXiv:2301.12652 (2023).

[32] Weiwei Sun, Lingyong Yan, Xinyu Ma, Pengjie Ren, Dawei Yin, and Zhaochun
Ren. 2023. Is ChatGPT Good at Search? Investigating Large Language Models as
Re-Ranking Agent. arXiv:2304.09542 (2023).

[33] Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna
Gurevych. 2021. BEIR: A Heterogeneous Benchmark for Zero-shot Evaluation of
Information Retrieval Models. In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 2).

[34] James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal.
2018. FEVER: a Large-scale Dataset for Fact Extraction and VERification. In
Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers). 809–819.

[35] Hugo Touvron et al. 2023. Llama 2: Open Foundation and Fine-Tuned Chat
Models. arXiv:2307.09288 (2023).

[36] Hugo Touvron et al. 2023. LLaMA: Open and Efficient Foundation Language
Models. arXiv:2302.13971 (2023).

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems.

[38] Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang,
Rangan Majumder, and Furu Wei. 2023. SimLM: Pre-training with Representation
Bottleneck for Dense Passage Retrieval. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers). 2244–
2258.

[39] Liang Wang, Nan Yang, and Furu Wei. 2023. Query2doc: Query Expansion
with Large Language Models. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing. Singapore, 9414–9423.

[40] Shitao Xiao, Zheng Liu, Yingxia Shao, and Zhao Cao. 2022. RetroMAE: Pre-
Training Retrieval-oriented Language Models Via Masked Auto-Encoder. In
Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing. 538–548.

[41] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul N. Bennett,
Junaid Ahmed, and Arnold Overwijk. 2021. Approximate Nearest Neighbor Neg-
ative Contrastive Learning for Dense Text Retrieval. In International Conference
on Learning Representations.

[42] Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin Jiang, Linjun Yang, Rangan
Majumder, and Furu Wei. 2023. Inference with Reference: Lossless Acceleration
of Large Language Models. arXiv:2304.04487 (2023).

[43] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang,
Yushuo Chen, Z. Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang
Liu, Peiyu Liu, Jianyun Nie, and Ji rong Wen. 2023. A Survey of Large Language
Models. arXiv:2303.18223 (2023).

[44] Honglei Zhuang, Zhen Qin, Rolf Jagerman, Kai Hui, Ji Ma, Jing Lu, Jianmo Ni,
Xuanhui Wang, and Michael Bendersky. 2023. RankT5: Fine-Tuning T5 for Text
Ranking with Ranking Losses. In Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR ’23).
2308–2313.

2425

	Abstract
	1 Introduction
	2 Method
	2.1 Retriever
	2.2 Reranker

	3 Experiments
	3.1 Passage Retrieval
	3.2 Document Retrieval

	4 Ablations and Analyses
	5 Conclusion
	References

