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Abstract

With the rapid increase in paper submissions to academic confer-
ences, the need for automated and accurate paper-reviewer match-
ing is more critical than ever. Previous efforts in this area have
considered various factors to assess the relevance of a reviewer’s
expertise to a paper, such as the semantic similarity, shared topics,
and citation connections between the paper and the reviewer’s
previous works. However, most of these studies focus on only one
factor, resulting in an incomplete evaluation of the paper-reviewer
relevance. To address this issue, we propose a unified model for
paper-reviewer matching that jointly considers semantic, topic, and
citation factors. To be specific, during training, we instruction-tune
a contextualized language model shared across all factors to cap-
ture their commonalities and characteristics; during inference, we
chain the three factors to enable step-by-step, coarse-to-fine search
for qualified reviewers given a submission. Experiments on four
datasets (one of which is newly contributed by us) spanning vari-
ous fields such as machine learning, computer vision, information
retrieval, and data mining consistently demonstrate the effective-
ness of our proposed Chain-of-Factors model in comparison with
state-of-the-art paper-reviewer matching methods and scientific
pre-trained language models.

CCS Concepts

• Information systems → Retrieval models and ranking; •
Computing methodologies → Natural language processing.
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Figure 1: Three major factors (i.e., semantic, topic, and cita-

tion) that should be considered for paper-reviewer matching.

1 Introduction

Finding experts with certain knowledge in online communities
has wide applications on the Web, such as community question
answering on Stack Overflow and Quora [15, 41] as well as au-
thoritative scholar mining from DBLP and AMiner [12, 60]. In the
academic domain, automatic paper-reviewer matching has become
an increasingly crucial task recently due to explosive growth in the
number of submissions to conferences and journals. Given a huge
volume of (e.g., several thousand) submissions, it is prohibitively
time-consuming for chairs or editors to manually assign papers
to appropriate reviewers. Even if reviewers can self-report their
expertise on certain papers through a bidding process, they can
hardly scan all submissions, hence an accurate pre-ranking result
should be delivered to them so that they just need to check a short-
list of papers. In other words, a precise scoring system that can
automatically judge the expertise relevance between each paper
and each reviewer becomes an increasingly urgent need for finding
qualified reviewers.

Paper-reviewer matching has been extensively studied as a text
mining task [1, 7, 18, 32, 46, 49], which aims to estimate to what
extent a reviewer is qualified to review a submission given the
text (e.g., title and abstract) of the submission as well as the papers
previously written by the reviewer. Intuitively, as shown in Figure
1, there are three major factors considered by related studies. (1)
Semantic: Taking the submission 𝑝 as a query, if the papers most
semantically relevant to the query are written by a reviewer 𝑟 , then
𝑟 should be qualified to review 𝑝 . This intuition is used by previous
methods such as the Toronto Paper Matching System (TPMS) [7],
where tf–idf is used for calculating the semantic relevance. (2)
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Topic: If a reviewer 𝑟 ’s previous papers share many fine-grained
research topics with the submission 𝑝 , then 𝑟 is assumed to be an
expert reviewer of 𝑝 . This assumption is utilized by topic modeling
approaches [1, 18, 32]. (3) Citation: Authors of the papers cited by
the submission 𝑝 are more likely to be expert reviewers of 𝑝 . This
intuition is leveraged by studies [46, 49] using citation-enhanced
scientific pre-trained language models (PLMs) such as SPECTER
[9] and SciNCL [35]. Note that most previous studies do not assume
that the topics and references of each paper are provided as input.
Instead, such information should be inferred from the paper text.1

Although various factors have been explored by previous studies,
we find that each method takes only one factor into account in most
cases. Intuitively, the semantic, topic, and citation factors corre-
late with each other but cannot fully replace each other. Therefore,
considering any of the three factors alone will lead to an incom-
prehensive evaluation of the paper-reviewer relevance. Moreover,
these factors are mutually beneficial. For example, understanding
the intent of one paper citing the other helps the estimation of
their semantic and topic relevance as well. Hence, one can expect
that a model jointly learning these three factors will achieve better
accuracy in each factor. Furthermore, the three factors should be
considered in a step-by-step, coarse-to-fine manner. To be specific,
semantic relevance serves as the coarsest signal to filter totally irrel-
evant reviewers; after examining the semantic factor, we can classify
each submission and each relevant reviewer to a fine-grained topic
space and check if they share common fields-of-study; after con-
firming that a submission and a reviewer’s previous paper have
common research themes, the citation link between them will be-
come an even stronger signal, indicating that the two papers may
focus on the same task or datasets and implying the reviewer’s
expertise on this submission.
Contributions. Inspired by the discussion above, in this paper, we
propose a Chain-of-Factors framework (abbreviated to CoF) to
unify the semantic, topic, and citation factors into one model for
paper-reviewer matching. By “unify”, we mean: (1) pre-training one
model that jointly considers the three factors so as to improve the
performance in each factor and (2) chaining the three factors during
inference to facilitate step-by-step, coarse-to-fine search for expert
reviewers. To implement this goal, we collect pre-training data of
different factors from multiple sources [9, 46, 63] to train a PLM-
based paper encoder. This encoder is shared across all factors to
learn common knowledge. Meanwhile, being aware of the unique-
ness of each factor and the success of instruction tuning in multi-
task pre-training [2, 44, 52, 53], we introduce factor-specific instruc-
tions to guide the encoding process so as to obtain factor-aware
paper representations. Inspired by the effectiveness of Chain-of-
Thought prompting [54], given the pre-trained instruction-guided
encoder, we utilize semantic, topic, and citation-related instructions
in a chain manner to progressively filter irrelevant reviewers.

We conduct experiments on four datasets covering different
fields including machine learning, computer vision, information
retrieval, and data mining. Three of the datasets are released in
previous studies [20, 32, 46]. The fourth is newly annotated by us,

1The reasons why related studies make such an assumption are multifold in our
view. To be specific, topics selected by the authors when they submit the paper are too
coarse (e.g., “Text Mining”), while paper-reviewer matching relies heavily on more fine-
grained topics (e.g., “Community Question Answering”); references in the submission
do not necessarily cover all papers that ought to be cited, so we should infer what the
submission should cite rather than what it actually cites.

which is larger than the previous three and contains more recent
papers. Experimental results show that our proposed CoF model
consistently outperforms state-of-the-art paper-reviewer matching
approaches and scientific PLM baselines on all four datasets. Further
ablation studies validate the reasons why CoF is effective: (1) CoF
jointly considers three factors rather than just one, (2) CoF chains
the three factors to enable a progressive selection process of relevant
reviewers instead of merging all factors in one step, and (3) CoF
improves upon the baselines in each factor empirically.

2 Preliminaries

2.1 Problem Definition

Given a set of paper submissions P = {𝑝1, 𝑝2, ..., 𝑝𝑀 } and a set of
candidate reviewers R = {𝑟1, 𝑟2, ..., 𝑟𝑁 }, the paper-reviewer match-
ing task aims to learn a function 𝑓 : P × R → R, where 𝑓 (𝑝, 𝑟 )
reflects the expertise relevance between the paper 𝑝 and the re-
viewer 𝑟 (i.e., how knowledgeable that 𝑟 is to review 𝑝). We conform
to the following three key assumptions made by previous studies
[1, 20, 28, 32, 46]: (1) We do not know any 𝑓 (𝑝, 𝑟 ) (𝑝 ∈ P, 𝑟 ∈ R)
as supervision, which is a natural assumption for a fully automated
paper-reviewer matching system. In other words, 𝑓 should be de-
rived in a zero-shot setting, possibly by learning from available data
from other sources. (2) To characterize each paper 𝑝 ∈ P, its text
information (e.g., title and abstract) is available, denoted by Text(𝑝).
(3) To characterize each reviewer 𝑟 ∈ R, its previous papers are
given, denoted by Q𝑟 = {𝑞𝑟,1, 𝑞𝑟,2, ..., 𝑞𝑟, | Q𝑟 | }. The text information
of each previous paper 𝑞 ∈ Q𝑟 is also provided. Q𝑟 is called the
publication profile of 𝑟 [33]. In practice, Q𝑟 may be a subset of 𝑟 ’s
previous papers (e.g., those published within the last 10 years or
those published in top-tier venues only). To summarize, the task is
defined as follows:

Definition 2.1. (Problem Definition) Given a set of papers P and
a set of candidate reviewers R, where each paper 𝑝 ∈ P has its text
information Text(𝑝) and each reviewer 𝑟 ∈ R has its publication
profile Q𝑟 (as well as Text(𝑞),∀𝑞 ∈ Q𝑟 ), the paper-reviewer match-
ing task aims to learn a relevance function 𝑓 : P × R → R and
rank the candidate reviewers for each paper according to 𝑓 (𝑝, 𝑟 ).

After 𝑓 (𝑝, 𝑟 ) is learned, there is another important line of work
focusing on assigning reviewers to each paper according to 𝑓 (𝑝, 𝑟 )
under certain constraints (e.g., the maximum number of papers each
reviewer can review, the minimum number of reviews each paper
should receive, and fairness in the assignment), which is cast as a
combinatorial optimization problem [17, 19, 22, 23, 29, 37, 48, 55].
This problem is usually studied independently from how to learn
𝑓 (𝑝, 𝑟 ) [1, 20, 28, 32, 46]. Therefore, in this paper, we concentrate
on learning a more accurate relevance function and do not touch
the assignment problem.

2.2 Semantic, Topic, and Citation Factors

Before introducing our CoF framework, we first examine the factors
considered by previous studies on paper-reviewer matching.
Semantic Factor. The Toronto Paper Matching System (TPMS)
[7] uses a bag-of-words vector (with tf–idf weighting) to represent
each submission paper or reviewer, where a reviewer 𝑟 ’s text is the
concatenation of its previous papers (i.e., ∥𝑞∈Q𝑟 Text(𝑞)). Given a
paper and a reviewer, their relevance 𝑓 (𝑝, 𝑟 ) is the dot product of
their corresponding vectors. For the perspective of the vector space
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model [43], each paper 𝑝 is treated as a “query”; each reviewer
𝑟 is viewed as a “document”; the expertise relevance between 𝑝
and 𝑟 is determined by the similarity between the “query” and the
“document”, which is the typical setting of semantic retrieval.
Topic Factor. Topic modeling approaches such as Author-Persona-
Topic Model [32] and Common Topic Model [1] project papers and
reviewers into a field-of-study space, where each paper or reviewer
is represented by a vector of its research fields. For example, a
paper may be 40% about “Large Language Models”, 40% about
“Question Answering”, 20% about “Precision Health”, and 0% about
other fields. If a paper and a reviewer share common research fields,
then the reviewer is expected to have sufficient expertise to review
the paper. Intuitively, the field-of-study space needs to be fine-
grained enough because sharing coarse topics only (e.g., “Natural
Language Processing” or “Data Mining”) is not enough to indicate
the paper-reviewer expertise relevance.
Citation Factor. Recent studies [46, 49] adopt scientific PLMs, such
as SPECTER [9] and SciNCL [35], for paper-reviewer matching.
During their pre-training process, both SPECTER and SciNCL are
initialized from SciBERT [6] and trained on a large number of cita-
tion links between papers. Empirical results show that emphasizing
such citation information significantly boosts their performance
in comparison with SciBERT. The motivation of considering the
citation factor in paper-reviewer matching is also clear: if a paper
𝑝 cites many papers written by a reviewer 𝑟 , then 𝑟 is more likely
to be a qualified reviewer of 𝑝 .

Although the three factors are correlated with each other (e.g., if
one paper cites the other, then they may also share similar topics),
they are obviously not identical. However, most previous studies
only consider one of the three factors, resulting in an incomprehen-
sive evaluation of paper-reviewer relevance. Moreover, the tech-
niques used are quite heterogeneous when considering different
factors. For example, citation-based approaches [46, 49] already
exploit contextualized language models, whereas semantic/topic-
based models [1, 7, 32] still adopt bag-of-words representations or
context-free embeddings. To bridge this gap, in this paper, we aim
to propose a unified framework to jointly consider the three factors
for paper-reviewer matching.

3 Model

3.1 Chain-of-Factors Matching

To consider different factors with a unified model, we exploit the
idea of instruction tuning [2, 36, 44, 52, 53] and prepend factor-
related instructions to each paper to get its factor-aware representa-
tions. To be specific, whenwe consider the semantic factor, we can
utilize a language model to jointly encode the instruction “Retrieve
a scientific paper that is relevant to the query.” and a paper 𝑝’s text
to get 𝑝’s semantic-aware embedding; when we consider the topic
factor, the instruction can be changed to “Find a pair of papers
that one paper shares similar scientific topic classes with the other
paper.” so that the PLM will output a topic-aware embedding of
𝑝; when we consider the citation factor, we can use “Retrieve
a scientific paper that is cited by the query.” as the instruction
context when encoding 𝑝 . To summarize, given a paper 𝑝 and a
factor 𝜙 , where 𝜙 ∈ {semantic, topic, citation}, we can leverage a
language model to jointly encode a factor-aware instruction 𝑖𝜙 and
Text(𝑝) to get its 𝜙-aware embedding 𝑔(𝑝 |𝜙).

The detailed architecture and pre-training process of the en-
coder 𝑔(·|·) will be explained in Sections 3.2 and 3.3, respectively.
Here, we first introduce how to use such an encoder to perform
chain-of-factors paper-reviewer matching, which is illustrated in
Figure 2. Given a paper 𝑝 , we let the model select expert reviewers
step by step. First, we retrieve papers that are relevant to 𝑝 from
the publication profile of all candidate reviewers. In this step, the
semantic factor is considered. Formally,
𝑓semantic (𝑝,𝑞) = 𝑔 (𝑝 |semantic)⊤𝑔 (𝑞 |semantic), ∀𝑞 ∈ ∪𝑟 ∈RQ𝑟 . (1)

Then, we rank all papers in ∪𝑟 ∈RQ𝑟 according to 𝑓semantic (𝑝, ·) and
only select those top-ranked ones (e.g., top 1%) for the next step. We
denote the set of retrieved relevant papers as QS, where S stands
for the semantic factor.

After examining the semantic factor, we proceed to the topic fac-
tor. Intuitively, if a reviewer 𝑟 ’s previous papers share fine-grained
themes with a submission 𝑝 , we should get a stronger hint of 𝑟 ’s
expertise on 𝑝 . Therefore, we further utilize a topic-related instruc-
tion to calculate the topic-aware relevance between 𝑝 and each
retrieved relevant paper 𝑞.

𝑓topic (𝑝,𝑞) = 𝑔 (𝑝 |topic)⊤𝑔 (𝑞 |topic), ∀𝑞 ∈ QS . (2)

We then rank all papers in QS according to 𝑓topic (𝑝, ·) and pick
those top-ranked ones as the output of this step, which we denote
as QS→T, where T stands for the topic factor.

After checking the topic factor, we further consider citation
signals. Given that two papers share common fine-grained research
topics, the citation link should provide an even stronger signal
of the relevance between two papers. For instance, if two papers
are both about “Information Extraction”, then one citing the other
may further imply that they are studying the same task or using
the same dataset. However, without the premise that two papers
have common research fields, the citation link becomes a weaker
indicator. For example, a paper about “Information Extraction” can
cite a paper about “Large Language Models” simply because the
former paper uses the large language model released in the latter
one. This highlights our motivation to chain the three factors for a
step-by-step, coarse-to-fine selection process of relevant papers and
expert reviewers. Formally, given QS→T, we use a citation-related
instruction to calculate the citation-aware relevance between 𝑝 and
each selected paper.

𝑓citation (𝑝,𝑞) = 𝑔 (𝑝 |citation)⊤𝑔 (𝑞 |citation), ∀𝑞 ∈ QS→T . (3)

Finally, we aggregate the score of papers to the score of candidate
reviewers writing these papers.

𝑓 (𝑝, 𝑟 ) =
∑︁

𝑞∈Q𝑟∩QS→T

(
𝑓semantic (𝑝,𝑞) + 𝑓topic (𝑝,𝑞) + 𝑓citation (𝑝,𝑞)

)
. (4)

Here, 𝑓 (𝑝, 𝑟 ) is the final relevance score between 𝑝 and 𝑟 , which
can be used to rank all candidate reviewers for 𝑝 . Note that in the
last step, we consider the sum of three types of relevance, so our
chain-of-factors matching strategy can be denoted as S → T →
S + T + C. In our experiments (Section 4.3), we will demonstrate
its advantage over only considering the citation factor in the last
step (i.e., S → T → C) or simply merging all factors in one step
(i.e., S + T + C).

3.2 Instruction-Guided Paper Encoding

Now we introduce the details of our proposed encoder 𝑔(·|·) that
can jointly encode a factor-aware instruction and a paper’s text
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Figure 2: The Chain-of-Factors match-

ing process.
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Figure 3: Pre-training the instruction encoder and the paper encoder to learn factor-

aware paper representations.

information. This section will focus on the architecture of this
encoder, and Sections 3.3 will elaborate more on its pre-training
process.

In CoF, we propose to pre-train two text encoders, one for encod-
ing instructions and the other for encoding papers given instruction
representations as contexts.
Instruction Encoding. Given an instruction 𝑖𝜙 (which is a se-
quence of tokens 𝑧1𝑧2 ...𝑧𝐴), the instruction encoder Enc𝑖 (·) adopts
a 12-layer Transformer architecture [51] (i.e., the same as BERTbase
[13]) to encode 𝑖𝜙 . Formally, let𝒉(0)𝑧 denote the input representation
of token 𝑧 (which is the sum of 𝑧’s token embedding, segment em-
bedding, and position embedding according to [13]); let 𝒉(𝑙 )𝑧 denote
the output representation of 𝑧 after the 𝑙-th layer. Then, the entire
instruction 𝑖𝜙 can be represented as 𝑯 (𝑙 )

𝑖𝜙
= [𝒉(𝑙 )𝑧1 ,𝒉

(𝑙 )
𝑧2 , ...,𝒉

(𝑙 )
𝑧𝐴 ].

The multi-head self-attention (MHA) in the (𝑙 + 1)-th layer will be
calculated as follows:

MHA(𝑯 (𝑙 )
𝑖𝜙

) = ∥𝑈𝑢=1 head𝑢 (𝑯
(𝑙 )
𝑖𝜙

),

where head𝑢 (𝑯 (𝑙 )
𝑖𝜙

) = softmax

(
𝑸 (𝑙 )
𝑢 𝑲 (𝑙 )⊤

𝑢√︁
𝑑/𝑈

)
· 𝑽 (𝑙 )
𝑢 ,

𝑸 (𝑙 )
𝑢 = 𝑯 (𝑙 )

𝑖𝜙
𝑾 (𝑙 )
𝑄,𝑢

, 𝑲 (𝑙 )
𝑢 = 𝑯 (𝑙 )

𝑖𝜙
𝑾 (𝑙 )
𝐾,𝑢

, 𝑽 (𝑙 )
𝑢 = 𝑯 (𝑙 )

𝑖𝜙
𝑾 (𝑙 )
𝑉 ,𝑢

.

(5)

With the MHA mechanism, the encoding process of the (𝑙 + 1)-th
layer will be:

𝑯 (𝑙 )
𝑖𝜙

= LN
(
𝑯 (𝑙 )
𝑖𝜙

+MHA(𝑯 (𝑙 )
𝑖𝜙

)
)
,

𝑯 (𝑙+1)
𝑖𝜙

= LN
(
𝑯 (𝑙 )
𝑖𝜙

+ FFN(𝑯 (𝑙 )
𝑖𝜙

)
)
,

(6)

where LN(·) is the layer normalization operator [3] and FFN(·) is
the position-wise feed-forward network [51].
Paper Encoding. After instruction encoding, the paper encoder
Enc𝑝 (·) takes instruction representations as contexts to guide the
encoding process of each paper 𝑝 = 𝑤1𝑤2 ...𝑤𝐵 . Specifically, Enc𝑝 (·)
has the same number of (i.e., 12) layers as Enc𝑖 (·), and the encoding
process of Enc𝑝 (·)’s (𝑙 + 1)-th layer incorporates the instruction
inputs from Enc𝑖 (·)’s corresponding layer (i.e., 𝑯 (𝑙 )

𝑖𝜙
) into its MHA

calculation. Formally, we define:

𝑯 (𝑙 )
𝑝 = [𝒉 (𝑙 )

𝑤1 ,𝒉
(𝑙 )
𝑤2 , ...,𝒉

(𝑙 )
𝑤𝐵

],

𝑯 (𝑙 )
𝑝 = 𝑯 (𝑙 )

𝑖𝜙
∥𝑯 (𝑙 )

𝑝 = [𝒉 (𝑙 )
𝑧1 ,𝒉

(𝑙 )
𝑧2 , ...,𝒉

(𝑙 )
𝑧𝐴
,𝒉 (𝑙 )
𝑤1 ,𝒉

(𝑙 )
𝑤2 , ...,𝒉

(𝑙 )
𝑤𝐵

] .
(7)

Taking instructional contexts into account, we calculate the follow-
ing asymmetric MHA [56]:

MHA𝑎𝑠𝑦 (𝑯 (𝑙 )
𝑝 ,𝑯 (𝑙 )

𝑝 ) = ∥𝑈𝑢=1 head𝑢 (𝑯
(𝑙 )
𝑝 ,𝑯 (𝑙 )

𝑝 ),

where head𝑢 (𝑯 (𝑙 )
𝑝 ,𝑯 (𝑙 )

𝑝 ) = softmax

(
𝑸 (𝑙 )
𝑢 𝑲 (𝑙 )⊤

𝑢√︁
𝑑/𝑈

)
· 𝑽 (𝑙 )
𝑢 ,

𝑸 (𝑙 )
𝑢 = 𝑯 (𝑙 )

𝑝 𝑾 (𝑙 )
𝑄,𝑢

, 𝑲 (𝑙 )
𝑢 = 𝑯 (𝑙 )

𝑝 𝑾 (𝑙 )
𝐾,𝑢

, 𝑽 (𝑙 )
𝑢 = 𝑯 (𝑙 )

𝑝 𝑾 (𝑙 )
𝑉 ,𝑢

.

(8)

The key differences between Eq. (8) and Eq. (5) are highlighted in
blue. With the asymmetric MHA mechanism, the paper encoding
process of the (𝑙 + 1)-th layer will be:

𝑯 (𝑙 )
𝑝 = LN

(
𝑯 (𝑙 )
𝑝 +MHA𝑎𝑠𝑦 (𝑯 (𝑙 )

𝑝 ,𝑯 (𝑙 )
𝑝 )

)
,

𝑯 (𝑙+1)
𝑝 = LN

(
𝑯 (𝑙 )
𝑝 + FFN(𝑯 (𝑙 )

𝑝 )
)
.

(9)

The final instruction-guided representation of 𝑝 is the output em-
bedding of its [CLS] token after the last layer. In other words,
𝑔(𝑝 |𝜙) = 𝒉(12)[CLS].
Summary. To give an intuitive summary of the encoding process,
as shown in Figure 3, the instruction 𝑖𝜙 serves as the context of
the paper 𝑝 (via attention illustrated by the red arrows), making
the final paper representation aware of the corresponding factor
𝜙 . Conversely, the paper does not serve as the context of the in-
struction because we want the semantic meaning of the instruction
to be stable and not affected by a specific paper. The parameters
of the two encoders Enc𝑖 (·) and Enc𝑝 (·) are shared during train-
ing. All three factors also share the same Enc𝑖 (·) and the same
Enc𝑝 (·) so that the model can carry common knowledge learned
from pre-training data of different factors.

3.3 Model Training

In this section, we introduce the data and objective used to pre-
trained the instruction-guided paper encoder 𝑔(·|·).
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Pre-training Data. For the semantic factor, each submission 𝑝
is treated as a “query” and each paper 𝑞 in a reviewer’s publica-
tion profile is viewed as a “document”. Thus, our 𝑔(·|semantic) is
learned to maximize the inner product of an ad-hoc query and its
semantically relevant document in the vector space. To facilitate
this, we adopt the Search dataset from the SciRepEval benchmark
[46] to pre-train our model, where the queries are collected from
an academic search engine, and the relevant documents are derived
from large-scale user click-through data.

Our 𝑔(·|topic) is trained to maximize the inner product of two
papers 𝑝 and 𝑞 if they share common research fields. We utilize
the MAPLE benchmark [63] as pre-training data in which millions
of scientific papers are tagged with their fine-grained fields-of-
study from the Microsoft Academic Graph [47]. For example, for CS
papers in MAPLE, there are over 15K fine-grained research fields,
and each paper is tagged with about 6 fields on average. Such data
are used to derive topically relevant paper pairs.

Our 𝑔(·|citation) is learned to maximize the inner product of two
papers 𝑝 and 𝑞 if 𝑝 cites 𝑞. Following [9, 35], we leverage a large
collection of citation triplets (𝑝, 𝑞+, 𝑞−) constructed by Cohan et al.
[9], where 𝑝 cites 𝑞+ but does not cite 𝑞− .

One can refer to Appendix A.1.1 for more details of the pre-
training data.
Pre-training Objective. For all three factors, each sample from
their pre-training data can be denoted as (𝑝, 𝑞+, 𝑞−1 , 𝑞

−
2 , ..., 𝑞

−
𝑇
), where

𝑞+ is relevant to 𝑝 (i.e., when 𝜙 = semantic, 𝑞+ is clicked by users
in a search engine given the search query 𝑝; when 𝜙 = topic, 𝑞+
shares fine-grained research fields with 𝑝; when 𝜙 = citation, 𝑞+
is cited by 𝑝) and 𝑞−𝑡 (𝑡 = 1, 2, ...,𝑇 ) are irrelevant to 𝑝 . Given a
factor 𝜙 and its training sample (𝑝, 𝑞+, 𝑞−1 , 𝑞

−
2 , ..., 𝑞

−
𝑇
), we can ob-

tain 𝑔(𝑝 |𝜙), 𝑔(𝑞+ |𝜙), 𝑔(𝑞−1 |𝜙), ..., and 𝑔(𝑞
−
𝑇
|𝜙) using the instruction

encoder Enc𝑖 (·) and the paper encoder Enc𝑝 (·). Then, we adopt a
contrastive loss [34] to train our model:

J = − log
exp(𝑔 (𝑝 |𝜙 )⊤𝑔 (𝑞+ |𝜙 ) )

exp(𝑔 (𝑝 |𝜙 )⊤𝑔 (𝑞+ |𝜙 ) ) + ∑𝑇
𝑡=1 exp(𝑔 (𝑝 |𝜙 )⊤𝑔 (𝑞−𝑡 |𝜙 ) )

. (10)

The overall pre-training objective is:

min
Enc𝑖 ( ·), Enc𝑝 ( ·)

∑︁
𝜙

∑︁
(𝑝,𝑞+,𝑞−1 ,𝑞

−
2 ,...,𝑞

−
𝑇
)
J . (11)

Note that our training paradigm is different from prefix/prompt-
tuning [24, 26, 27]. To be specific, prefix/prompt-tuning freezes the
backbone language model and optimizes the prefix/prompt part
only, and its major goal is a more efficient language model tuning
paradigm. By contrast, we train the instruction encoder and the
paper encoder simultaneously, aiming for a more effective unified
model to obtain factor-aware text representations.

4 Experiments

4.1 Setup

4.1.1 Evaluation Datasets. Collecting the ground truths of paper-
reviewer relevance is challenging. Some related studies [1, 40, 42]
can fortunately access actual reviewer bidding data in previous
conferences where reviewers self-report their expertise on certain
papers, but such confidential information cannot be released, so
the used datasets are not publicly available. Alternatively, released
benchmark datasets [20, 32, 65] gather paper-reviewer relevance

Table 1: Dataset Statistics.

Dataset #Papers #Reviewers #Annotated
(𝑝, 𝑟 ) Pairs Conference(s)

NIPS [32] 34 190 393 NIPS 2006
SciRepEval [46] 107 661 1,729 NIPS 2006, ICIP 2016

SIGIR [20] 73 189 13,797 SIGIR 2007
KDD 174 737 3,480 KDD 2020

judgments from annotators with domain expertise. In our exper-
iments, we adopt the latter solution and consider four publicly
available datasets covering diverse domains, including machine
learning, computer vision, information retrieval, and data mining.
• NIPS [32] is a pioneering benchmark dataset for paper-reviewer
matching. It consists of expertise relevance judgements between
34 papers accepted by NIPS 2006 and 190 reviewers. Annotations
were done by 9 researchers from the NIPS community, and the
score of each annotated paper-reviewer pair can be “3” (very
relevant), “2” (relevant), “1” (slightly relevant), or “0” (irrelevant).
Note that for each paper, the annotators only judge its relevance
with a subset of reviewers.

• SciRepEval [46] is a comprehensive benchmark for evaluating
scientific document representation learning methods. Its paper-
reviewer matching dataset combines the annotation effort from
multiple sources [28, 32, 65]. Specifically, Liu et al. [28] added
relevance scores of more paper-reviewer pairs to the NIPS dataset
to mitigate its annotation sparsity; Zhao et al. [65] provided some
paper-reviewer relevance ratings for the ICIP 2016 conference.
The combined dataset still adopts the “0”-“3” rating scale.

• SIGIR [20] contains 73 papers accepted by SIGIR 2007 and 189
prospective reviewers. Instead of annotating each specific paper-
reviewer pair, the dataset constructors assign one or more as-
pects of information retrieval (e.g., “Evaluation”, “Web IR”, and
“Language Models”, with 25 candidate aspects in total) to each pa-
per and each reviewer. Then, the relevance between a paper and
a reviewer is determined by their aspect-level similarity. In our
experiments, to align with the rating scale in NIPS and SciRepE-
val, we discretize the Jaccard similarity between a paper’s aspects
and a reviewer’s aspects to map their relevance to “0”-“3”.

• KDD is a new dataset introduced in this paper annotated by
us. Our motivation for constructing it is to contribute a paper-
reviewer matching dataset with more recent data mining papers.
The dataset contains relevance scores of 3,480 paper-reviewer
pairs between 174 papers accepted by KDD 2020 and 737 prospec-
tive reviewers. Annotations were done by 5 data mining re-
searchers, following the “0”-“3” rating scale. More details on
the dataset construction process can be found in Appendix A.1.2.

Following [32, 46], we consider two different task settings: In the
Soft setting, reviewers with a score of “2” or “3” are considered as
relevant; in the Hard setting, only reviewers with a score of “3” are
viewed as relevant. Dataset statistics are summarized in Table 1.

4.1.2 Compared Methods. We compare CoF with both classical
paper-reviewer matching baselines and pre-trained language mod-
els considering different factors.
• Author-Persona-Topic Model (APT200) [32] is a topicmodel
specifically designed for paper-reviewer matching. It augments
the generative process of LDA with authors and personas, where
each author can write papers under one or more personas repre-
sented as distributions over hidden topics.
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Table 2: P@5 scores on the NIPS dataset. Bold: the highest

score. *: CoF is significantly better than this method with p-

value < 0.05. **: CoF is significantly better than this method

with p-value < 0.01. Red , Yellow , Blue : models mainly

focusing on the semantic , topic , and citation factors,

respectively. Scores of APT200, RWR, and Common Topic

Model are reported in [32], [28], and [1], respectively.

NIPS [32]

Soft

P@5

Hard

P@5

P@5 defined

in [28]

P@5 defined

in [1]

APT200 [32] 41.18∗∗ 20.59∗∗ – –
TPMS [7] 49.41∗∗ 22.94∗∗ 50.59∗∗ 55.15∗∗
RWR [28] – 24.1∗∗ 45.3∗∗ –

Common Topic Model [1] – – – 56.6∗∗

SciBERT [6] 47.06∗∗ 21.18∗∗ 49.61∗∗ 52.79∗∗
SPECTER [9] 52.94∗∗ 25.29∗∗ 53.33∗∗ 58.68∗∗
SciNCL [35] 54.12∗∗ 27.06∗∗ 54.71∗∗ 59.85∗∗

COCO-DR [58] 54.12∗∗ 25.29∗∗ 54.51∗∗ 59.85∗∗
SPECTER 2.0 CLF [46] 52.35∗∗ 24.71∗∗ 53.33∗∗ 58.09∗∗
SPECTER 2.0 PRX [46] 53.53∗∗ 27.65 54.71∗∗ 59.26∗∗

CoF 55.68 28.24 56.41 61.42

• Toronto Paper Matching System (TPMS) [7] focuses on the
semantic factor and defines paper-reviewer relevance as the
tf–idf similarity between them.

• RandomWalk with Restart (RWR) [28]mainly considers the
topic factor for paper-reviewer matching. It constructs a graph
with reviewer-reviewer edges (representing co-authorship) and
submission-reviewer edges (derived from topic-based similarity
after running LDA). Then, the model conducts random walk with
restart on the graph to calculate submission-reviewer proximity.

• Common Topic Model [1] is an embedding-based topicmodel
specifically designed for paper-reviewer matching. It jointly mod-
els the common topics of submissions and reviewers by taking
the word2vec embeddings [31] as input.

• SciBERT [6] is a PLM trained on scientific papers following the
idea of BERT (i.e., taking masked language modeling and next
sentence prediction as pre-training tasks).

• SPECTER [9] is a scientific PLM initialized from SciBERT and
trained on citation links between papers.

• SciNCL [35] is also a scientific PLM initialized from SciBERT and
trained on citation links. It improves the hard negative sampling
strategy of SPECTER.

• COCO-DR [58] is a PLM trained onMSMARCO [4] for zero-shot
dense information retrieval. We view COCO-DR as a representa-
tive PLM baseline focusing on the semantic factor.

• SPECTER 2.0 [46] is a PLM trained on a wide range of scien-
tific literature understanding tasks. It adopts the architecture
of adapters [38] for multi-task learning, so there are different
model variants. We consider two variants in our experiments:
SPECTER 2.0 PRX is mainly trained on citation prediction and
same author prediction tasks. It is evaluated for paper-reviewer
matching in [46]. SPECTER 2.0 CLF is mainly trained on clas-
sification tasks. Although it is not evaluated for paper-reviewer
matching in [46], we view it as a representative PLM baseline
focusing on the topic factor.

Implementation details and hyperparameter configurations of the
baselines and CoF can be found in Appendices A.2.1 and A.2.2.

4.1.3 Evaluation Metrics. Following [32, 46], we adopt P@5 and
P@10 as evaluation metrics. For each submission paper 𝑝 , let R𝑝
denote the set of candidate reviewers that have an annotated rele-
vance score with 𝑝 ; let 𝑟𝑝,𝑘 denote the reviewer ranked 𝑘-th in R𝑝
according to 𝑓 (𝑝, 𝑟 ). Then, the P@𝐾 scores (𝐾 = 5 and 10) under
the Soft and Hard settings are defined as:

Soft P@𝐾 =
1
| P |

∑︁
𝑝∈P

∑𝐾
𝑘=1 1

(
score(𝑝, 𝑟𝑝,𝑘 ) ≥ 2

)
𝐾

,

Hard P@𝐾 =
1
| P |

∑︁
𝑝∈P

∑𝐾
𝑘=1 1

(
score(𝑝, 𝑟𝑝,𝑘 ) = 3

)
𝐾

.

(12)

Here, 1(·) is the indicator function; score(𝑝, 𝑟 ) is the annotated
relevance score between 𝑝 and 𝑟 .

4.2 Performance Comparison

Tables 2 and 3 show the performance of compared methods on the
four datasets. We are unable to find a publicly available implemen-
tation of APT200, RWR, and Common Topic Model, so we put their
reported performance on the NIPS dataset [1, 28, 32] into Table 2.
Note that in [28] and [1], the definitions of (Soft) P@𝐾 are slightly
different from that in Eq. (12). To be specific,

P@𝐾 defined in [28] =
1
| P |

∑︁
𝑝∈P

∑𝐾
𝑘=1 score(𝑝, 𝑟𝑝,𝑘 )

3𝐾
,

P@𝐾 defined in [1] =
1
| P |

∑︁
𝑝∈P

∑𝐾
𝑘=1 1

(
score(𝑝, 𝑟𝑝,𝑘 ) ≥ 2

)
min{𝐾, | R𝑝 | }

.

(13)

To compare with the numbers reported in [28] and [1] on NIPS,
we also calculate the P@𝐾 scores following these two alternative
definitions and show them in Table 2.

In Tables 2 and 3, to show statistical significance, we run CoF 3
times and conduct a two-tailed Z-test to compare CoF with each
baseline. The significance level is also marked in the two tables.
We can observe that: (1) On the NIPS dataset, CoF consistently
achieves the best performance in terms of all shown metrics. In
all but one of the cases, the improvement is significant with p-
value < 0.01. On SciRepEval, SIGIR, and KDD, we calculate the
average of the four metrics (i.e., {Soft, Hard} × {P@5, P@10}). In
terms of the average metric, CoF consistently and significantly
outperforms all baselines. If we check each metric separately, CoF
achieves the highest score in 9 out of 12 columns. (2) PLM baselines
always outperform classical paper-reviewer matching baselines
considering the same factor. This rationalizes our motivation to
unify all factors with a PLM-based framework.

4.3 Ablation Study

The key technical novelty of CoF is twofold: (1) we use instruction
tuning to learn factor-specific representations during pre-training,
and (2) we exploit chain-of-factors matching during inference.
Now we demonstrate the contribution of our proposed techniques
through a comprehensive ablation study. To be specific, we examine
the following ablation versions:
• No-Instruction takes all pre-training data to train one paper
encoder without using instructions. In this way, the model can
only output one factor-agnostic embedding for each paper.

• The model can be pre-trained on data from all three factors but
only consider one factor during inference. This yields 3 ablation
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Table 3: P@5 and P@10 scores on the SciRepEval, SIGIR, and KDD datasets. Bold, ∗, ∗∗, Red , Yellow , and Blue : the same

meaning as in Table 2.

SciRepEval [46] SIGIR [20] KDD

Soft

P@5

Soft

P@10

Hard

P@5

Hard

P@10

Average

Soft

P@5

Soft

P@10

Hard

P@5

Hard

P@10

Average

Soft

P@5

Soft

P@10

Hard

P@5

Hard

P@10

Average

TPMS [7] 62.06∗∗ 53.74∗∗ 31.40∗∗ 24.86∗∗ 43.02∗∗ 39.73∗∗ 38.36∗∗ 17.81∗∗ 17.12∗∗ 28.26∗∗ 17.01∗∗ 16.78∗∗ 6.78∗∗ 7.24∗∗ 11.95∗∗
SciBERT [6] 59.63∗∗ 54.39∗∗ 28.04∗∗ 24.49∗∗ 41.64∗∗ 34.79∗∗ 34.79∗∗ 14.79∗∗ 15.34∗∗ 24.93∗∗ 28.51∗∗ 27.36∗∗ 12.64∗∗ 12.70∗∗ 20.30∗∗
SPECTER [9] 65.23∗∗ 56.07 32.34∗∗ 25.42 44.77∗∗ 39.73∗∗ 40.00∗∗ 16.44∗∗ 16.71∗∗ 28.22∗∗ 34.94∗∗ 30.52∗∗ 15.17∗∗ 13.28 23.48∗∗
SciNCL [35] 66.92∗∗ 55.42∗∗ 34.02∗ 25.33 45.42∗∗ 40.55∗∗ 39.45∗∗ 17.81∗∗ 17.40∗ 28.80∗∗ 36.21∗∗ 30.86∗∗ 15.06∗∗ 12.70∗∗ 23.71∗∗

COCO-DR [58] 65.05∗∗ 55.14∗∗ 31.78∗∗ 24.67∗∗ 44.16∗∗ 40.00∗∗ 40.55∗ 16.71∗∗ 17.53 28.70∗∗ 35.06∗∗ 29.89∗∗ 13.68∗∗ 12.13∗∗ 22.69∗∗
SPECTER 2.0 CLF [46] 64.49∗∗ 55.23∗∗ 31.59∗∗ 24.49∗∗ 43.95∗∗ 39.45∗∗ 38.63∗∗ 16.16∗∗ 16.30∗∗ 27.64∗∗ 34.37∗∗ 30.63∗∗ 14.48∗∗ 12.64∗∗ 23.03∗∗
SPECTER 2.0 PRX [46] 66.36∗∗ 55.61∗∗ 34.21 25.61 45.45∗∗ 40.00∗∗ 38.90∗∗ 19.18∗∗ 16.85∗∗ 28.73∗∗ 37.13 31.03 15.86∗∗ 13.05∗ 24.27∗

CoF 68.47 55.89 34.52 25.33 46.05 45.57 41.69 22.47 17.76 31.87 37.63 31.09 16.13 13.08 24.48

Table 4: Average metrics of CoF and its ablation versions on

NIPS, SIGIR, and KDD.

NIPS SIGIR KDD

CoF (S → T → S + T + C) 50.44 31.87 24.48

No-Instruction 49.52∗∗ 27.67∗∗ 24.07∗∗
S 50.29 28.07∗∗ 24.05∗∗
T 49.98 28.69∗∗ 24.11∗
C 50.31 28.81∗∗ 24.20∗

S + T + C 50.55 28.63∗∗ 24.26∗
S → T → C 50.11 31.79 24.36

versions, denoted as S, T, and C, considering semantic, topic, and
citation information, respectively.

• The model can consider all three factors during inference without
chain-of-factors matching. In this case, it directly uses

𝑓 (𝑝, 𝑟 ) =
∑︁
𝑞∈Q𝑟

(
𝑓semantic (𝑝, 𝑞) + 𝑓topic (𝑝, 𝑞) + 𝑓citation (𝑝, 𝑞)

)
as the criteria to rank all candidate reviewers, and we denote this
ablation version as S + T + C.

• The model can adopt a chain-of-factors matching strategy but
only utilize citation information in the last step of the chain. We
denote this variant as S → T → C.

Table 4 compares the full CoF model (i.e., S → T → S + T + C)
with aforementioned ablation versions on NIPS, SIGIR, and KDD.
We can see that: (1) the full model always significantly outper-
forms No-Instruction, indicating the importance of our proposed
instruction-aware pre-training step. (2) On SIGIR and KDD, the
full model is significantly better than S, T, C and S + T + C. This
highlights the benefits of considering multiple factors and adopting
a chain-of-factors matching strategy during inference, correspond-
ing to the two technical contributions of CoF. (3) The full model is
consistently better than S → T → C, but the gap is not significant.
In particular, on SIGIR, there is a very clear margin between models
with chain-of-factors matching and those without.

4.4 Effectiveness in Each Factor

One may suspect that some baselines are more powerful than CoF
in a certain factor, but finally underperform CoF in paper-reviewer
matching just because CoF takes more factors into account and
adopts chain-of-factors matching. To dispel such misgivings, we
examine the performance of compared methods in three tasks –
semantic retrieval, topic classification, and citation prediction –
corresponding to the three factors, respectively. Specifically, for

Table 5: Performance of compared models in three tasks re-

lated to semantic, topic, and citation factors, respectively, on

KDD. All three tasks require a model to rank 100 candidates

(1 relevant and 99 irrelevant) for each query. We report the

mean rank of the relevant candidate achieved by each model

(the lower the better).

Semantic (S) Topic (T) Citation (C)

SciBERT [6] 10.88∗∗ 25.52∗∗ 19.47∗∗
SPECTER [9] 3.37∗∗ 7.90∗∗ 6.12∗∗
SciNCL [35] 1.40∗∗ 6.05∗∗ 5.35∗∗

COCO-DR [58] 2.55∗∗ 7.34∗∗ 9.80∗∗
SPECTER 2.0 CLF [46] 4.41∗∗ 12.56∗∗ 9.69∗∗
SPECTER 2.0 PRX [46] 1.33∗ 6.11∗∗ 4.75∗∗

CoF 1.21 3.02 3.97

each submission paper 𝑝 in the KDD dataset2, we sample 100 can-
didates among which only one is “relevant” to 𝑝 and the other 99
are “irrelevant”. Here, the meaning of “relevant” depends on the
examined task. For topic classification, we sample one of 𝑝’s fields,
and the “relevant” candidate is the name of that field; the “irrele-
vant” candidates are names of other randomly sampled fields. For
citation prediction, we select one of the papers cited by 𝑝 as the
“relevant” candidate; the “irrelevant” candidates are chosen from
candidate reviewers’ previous papers not cited by 𝑝 . For semantic
retrieval, we conduct a title-to-abstract retrieval task, where the
query is 𝑝’s title, the “relevant” candidate is 𝑝’s abstract, and the “ir-
relevant” candidates are sampled from other papers’ abstracts. Note
that for the topic classification task, the instructions used by CoF
for paper-reviewer matching are no longer suitable, so we adopt
a new instruction “Tag a scientific paper with relevant scientific
topic classes.”.

For each task, we ask compared models to rank the 100 candi-
dates for each submission 𝑝 and calculate the mean rank of the
“relevant” candidate. A perfect model should achieve a mean rank
of 1, and a random guesser will get an expected mean rank of 50.5.
Table 5 shows the performance of compared models in the three
tasks, where CoF consistently performs the best. This observa-
tion proves that the reasons why CoF can outperform baselines
in paper-reviewer matching are twofold: (1) CoF jointly considers
three factors in a chain manner (the benefit of which has been

2We use the KDD dataset for experiments in Sections 4.4 and 4.5 because the required
information of each paper (e.g., venue, year, references, fields) is stored when we
construct the dataset. By contrast, such information is largely missing in the other
three datasets.
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shown in Table 4), and (2) CoF indeed improves upon the baselines
in each of the three factors.

4.5 Effect of Reviewers’ Publication Profile

How to form each reviewer’s publication profile may affect model
performance. Shall we include all papers written by a reviewer
or set up some criteria? Here, we explore the effect of three intu-
itive criteria. (1) Time span: What if we include papers published
in the most recent 𝑌 years only (because earlier papers may have
diverged from reviewers’ current interests)? For example, for the
KDD 2020 conference, if 𝑌 = 5, then we only put papers published
during 2015-2019 into reviewers’ publication profile. Figure 4(a)
shows the performance of CoF with 𝑌 = 1, 2, 5, 10, and 20. We
observe that including more papers is always beneficial, but the
performance starts to converge at 𝑌 = 10. (2) Venue: What if we
include papers published in top venues only? Figure 4(b) compares
the performance of using all papers written by the reviewers with
that of using papers published in “top conferences” only. Here, “top
conferences” refer to the 75 conferences listed on CSRankings3 in
2020 (with KDD included). The comparison implies that papers not
published in top conferences still have a positive contribution to
characterize reviewers’ expertise. (3) Rank in the author list: What
if we include each reviewer’s first-author and/or last-author papers
only (because these two authors often contribute most to the paper
according to [11])? Figure 4(b) also shows the performance of using
each reviewer’s first-author papers, last-author ones, and the union
of them. Although the union is evidently better than either alone,
it is still obviously behind using all papers. To summarize our find-
ings, when the indication from reviewers is not available, putting
the whole set of their papers into their publication profile is almost
always helpful. This is possibly because our chain-of-factors match-
ing strategy enables coarse-to-fine filtering of irrelevant papers,
making the model more robust towards noises.

5 Related Work

Paper-ReviewerMatching. Following the logic of the entire paper,
we divide previous paper-reviewer matching methods according to
the factor they consider. In earlier times, semantic-based approaches
use bag-of-words representations, such as tf–idf vectors [7, 16, 57]
and keywords [39, 50] to describe each submission paper and each
reviewer. As a key technique in classical information retrieval, prob-
abilistic language models have also been utilized in expert finding
[5]. More recent semantic-based methods have started to employ
context-free word embeddings [59, 64] for representation. Topic-
based approaches leverage topic models such as Latent Semantic
Indexing [14, 25], Probabilistic Latent Semantics Analysis [10, 20],
and Latent Dirichlet Allocation (and its variants) [18, 23, 28] to
infer each paper/reviewer’s topic distribution. This idea is recently
improved by exploiting embedding-enhanced topic models [1, 40].
Inspired by the superiority of contextualized language models to
context-free representations, recent studies [46, 49] apply scientific
PLMs [61] such as SPECTER [9], SciNCL [35], and SPECTER 2.0 [46]
to perform paper-reviewer matching. These PLMs are pre-trained
on a large amount of citation information between papers. For a
more complete discussion of paper-reviewer matching studies, one
can refer to a recent survey [65]. Note that most of the aforemen-
tioned approaches take only one factor into account, resulting in
3https://csrankings.org/
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Figure 4: (a) Performance of CoF with different time spans

within which the reviewers’ previous papers are considered.

(b) Performance of CoF with different criteria to construct

reviewers’ publication profile.

an incomprehensive estimation of the paper-reviewer relevance. In
comparison, CoF jointly considers the semantic, topic, and citation
factors with a unified model.
Instruction Tuning. Training (large) language models to follow
instructions on many tasks has been extensively studied [8, 36, 44,
52, 53]. However, these instruction-tuned language models mainly
adopt a decoder-only or encoder-decoder architecture with bil-
lions of parameters, aiming at generation tasks and hard to adapt
for paper-reviewer matching. Moreover, the major goal of these
studies is to facilitate zero-shot or few-shot transfer to new tasks
rather than learning task-aware representations. Recently, Asai et
al. [2] propose to utilize task-specific instructions for information
retrieval; Zhang et al. [62] further explore instruction tuning in
various scientific literature understanding tasks such as paper clas-
sification and link prediction. However, unlike CoF, these models
do not fuse signals from multiple tasks/factors during inference,
and paper-reviewer matching is not their target task.

6 Conclusions and Future Work

In this work, we present a Chain-of-Factors framework that
jointly considers semantic, topic, and citation signals in a step-by-
step, coarse-to-fine manner for paper-reviewer matching. We pro-
pose an instruction-guided paper encoding process to learn factor-
aware text representations so as to model paper-reviewer relevance
of different factors. Such a process is facilitated by pre-training an
instruction encoder and a paper encoder with a contextualized lan-
guage model backbone. Experimental results validate the efficacy of
our CoF framework on four datasets across various fields. Ablation
studies reveal the key reasons behind the superiority of CoF over
the baselines: (1) CoF takes into account three factors holistically
rather than focusing on just one, (2) CoF integrates these three
factors in a progressive manner for relevant paper selection, rather
than combining them in a single step, and (3) CoF outperforms the
baselines across each individual factor. We also conduct analyses
on how the composition of each reviewer’s publication profile will
affect the paper-reviewer matching performance.

As for future work, we strongly believe that deploying our model
to real conference management systems would largely increase
the practical value of this paper. Also, it would be interesting to
generalize our chain-of-factors matching framework to other tasks
that aim to learn the proximity between two text units.
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A Appendix

A.1 Datasets

A.1.1 Pre-training Data. Wehave briefly introduced the pre-training
data in Section 3.3. Here are more details.
• Search from SciRepEval [46]

4 is used for the semantic factor.
It has over 528K queries. For each query, a list of documents is
given, and the score between the query and each document falls
into {0, 1, ..., 14}, reflecting how often the document is clicked by
users given the query. We treat a document as relevant if it has a
non-zero score with the query. Other documents in the list are
viewed as hard negatives.

• CS-Journal fromMAPLE [63]
5 is used for the topic factor. It has

more than 410K papers published in top CS journals from 1981
to 2020. We choose CS-Journal instead of CS-Conference from
MAPLE for pre-training so as to mitigate data leakage because
the four evaluation datasets are all constructed from previous
conference papers. In CS-Journal, each paper is tagged with its
relevant fields. There are over 15K fine-grained fields organized
into a 5-layer hierarchy [45]. Two papers are treated as relevant
if they share at least one field at Layer 3 or deeper.

• Citation Prediction Triplets [9]
6 are used for the citation

factor. There are more than 819K paper triplets (𝑝, 𝑞+, 𝑞−), where
𝑝 cites 𝑞+, 𝑞+ cites 𝑞− , but 𝑝 does not cite 𝑞− .

Hard Negatives. Cohan et al. [9] show that a combination of
easy negatives and hard negatives boosts the performance of their
contrastive learning model. Following their idea, given a factor
𝜙 and its training sample (𝑝, 𝑞+, 𝑞−1 , 𝑞

−
2 , ..., 𝑞

−
𝑇
), we take in-batch

negatives [21] as easy negatives and adopt the following strategies
to find hard negatives: when 𝜙 = semantic, 𝑞−𝑡 is a hard negative
if it is shown to users but not clicked given the query 𝑝; when
𝜙 = topic, 𝑞−𝑡 is a hard negative if it shares the same venue but does
not share any fine-grained field with 𝑝; when 𝜙 = citation, 𝑞−𝑡 is a
hard negative if 𝑞+ cites 𝑞−𝑡 but 𝑝 does not cite 𝑞−𝑡 .

A.1.2 Construction of the KDD Dataset. We rely on the Microsoft
Academic Graph (MAG) [47] to extract each paper’s title, abstract,
venue, and author(s). The latest KDD conference available in our
downloaded MAG is KDD 2020. Therefore, we first retrieve all KDD
2020 papers from MAG as potential “submission” papers. Then,
we select those researchers meeting the following two criteria as
candidate reviewers: (1) having published at least 1 KDD paper
during 2018-2020, and (2) having published at least 3 papers in “top
conferences”. Consistent with the definition in Section 4.5, “top-
conferences” refer to the 75 conferences listed on CSRankings in
2020, including KDD. Guided by our observations in Section 4.5, for
each candidate reviewer 𝑟 , we include all of its papers published in

4https://huggingface.co/datasets/allenai/scirepeval/viewer/search
5https://github.com/yuzhimanhua/MAPLE
6https://huggingface.co/datasets/allenai/scirepeval/viewer/cite_prediction

2019 or earlier to form its publication profile Q𝑟 . Next, we randomly
sample about 200 papers from KDD 2020. For each sampled paper,
we select 20 candidate reviewers for annotation. We do our best
to ensure that conflict-of-interest reviewers (e.g., authors and their
previous collaborators) are not selected. To reduce the possibility
that none of the selected reviewers is relevant to the paper (which
makes the paper useless in evaluation), reviewers sharing a higher
TPMS score [7] with the paper are more likely to be selected for
annotation. Finally, we invite 5 annotators to independently rate
each pair of (paper, selected reviewer) according to the “0”-“3” rel-
evance scheme. During this process, we provide each annotator
with the paper title, the paper abstract, the reviewer’s name, and
the reviewer’s previous papers (sorted by their citation counts from
high to low). The final score between a paper and a reviewer is the
average rating from the annotators rounded to the nearest integer.
We remove papers that: (1) do not have any selected reviewer with
an annotated relevance score greater than or equal to “2” or (2)
annotators are not able to judge its relevance to some candidate
reviewers, resulting in 174 papers in the final dataset. On average,
each paper in our KDD dataset has 2.10 reviewers with a relevance
score of “3”, 3.05 reviewers with a score of “2”, 6.32 reviewers with
a score of “1”, and 8.53 reviewers with a score of “0”.

A.2 Implementation Details

A.2.1 Baselines. We use the following implementation/checkpoint
of each baseline:
• TPMS: https://github.com/niharshah/goldstandard-reviewer-pa
per-match/blob/main/scripts/tpms.py

• SciBERT: https://huggingface.co/allenai/scibert_scivocab_unca
sed

• SPECTER: https://huggingface.co/allenai/specter
• SciNCL: https://huggingface.co/malteos/scincl
• COCO-DR: https://huggingface.co/OpenMatch/cocodr-base-ms
marco

• SPECTER 2.0: https://huggingface.co/allenai/specter2
For PLM baselines, we follow [46] and adopt the average of top-
3 values to aggregate paper-paper relevance to paper-reviewer
relevance.

A.2.2 CoF. The maximum input sequence lengths of instructions
and papers are set as 32 tokens and 256 tokens, respectively. We
train the model for 20 epochs with a peak learning rate of 3e-4
and a weight decay of 0.01. The AdamW optimizer [30] is used
with (𝛽1, 𝛽2) = (0.9, 0.999). The batch size is 32. For each training
sample, we create one hard negative and combine it with easy
in-batch negatives for contrastive learning.
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