

## CSCE 689 – NLP For Science

Scientific VLMs: Miscellaneous

Hasnat Md Abdullah February 20, 2025

Instructor: Dr. Yu Zhang (yuzhang@tamu.edu)



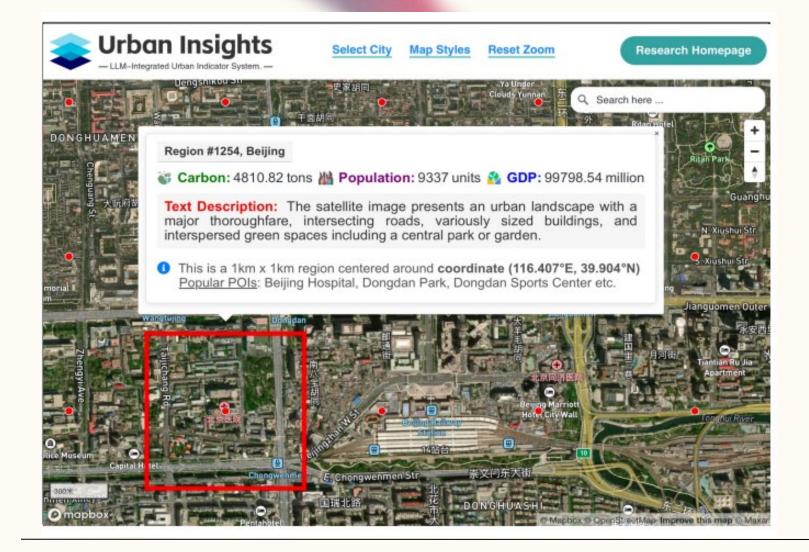
# Agenda

- UrbanCLIP: Learning Text–Enhanced Urban Region Profiling with Contrastive Language-Image Pretraining from the Web
- BIOCLIP: A Vision Foundation Model for the Tree of Life
- MMMU: A Massive Multi-discipline Multimodal Understanding and **Reasoning Benchmark for Expert AGI**

# Agenda

- UrbanCLIP: Learning Text-Enhanced Urban Region Profiling with Contrastive Language-Image Pretraining from the Web
- BIOCLIP: A Vision Foundation Model for the Tree of Life
- MMMU: A Massive Multi-discipline Multimodal Understanding and **Reasoning Benchmark for Expert AGI**

# **Urban Region Profiling**



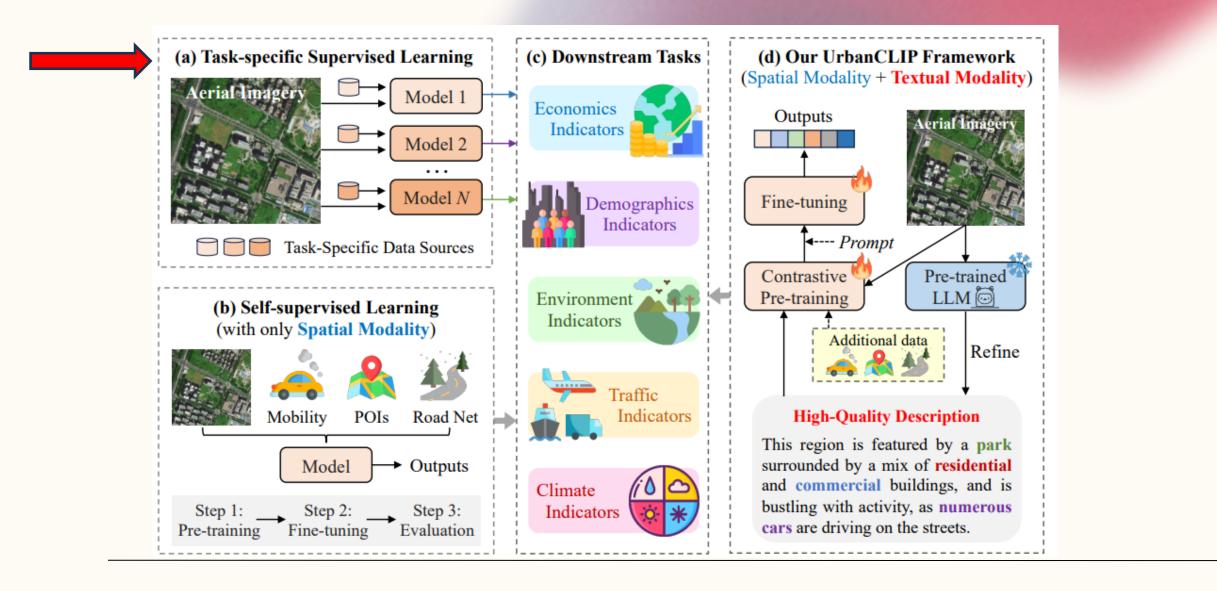
The process of representing and summarizing key features and attributes of urban areas.

**Urban Indicators:** Carbon Emission, Population, GDP, and **Textual Description with more** insights.

Source: UrbanCLIP: Learning Text-Enhanced Urban Region Profiling with Contrastive Language-Image Pretraining from the Web

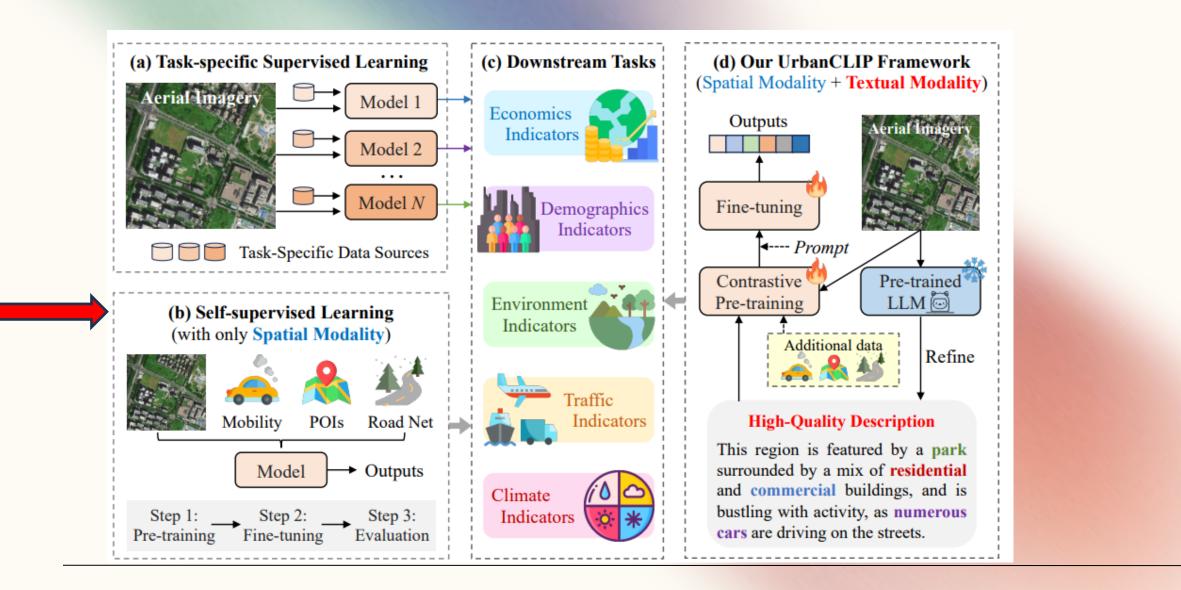
: Regression / Predicting Scalar Values

# Urban Region Profiling



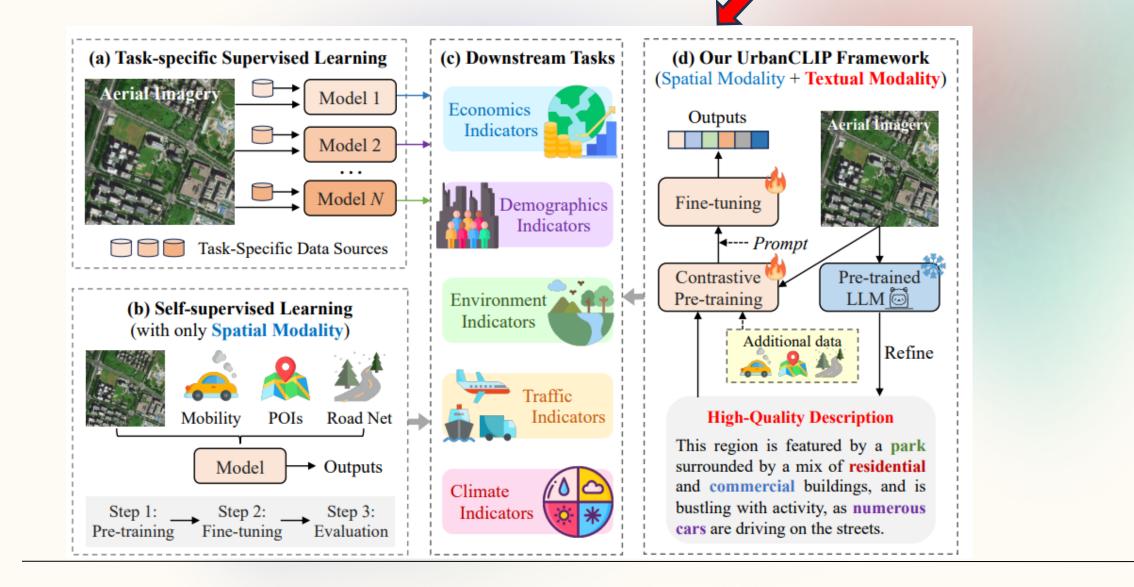
- Data Source: Satellite Imagery
- Requires considerable amount of labeled data, generalizability issue
- Tasks:
  - Poverty labels
  - Crop Yields
  - Population Land Cover
  - Commercial Activity

# **Urban Region Profiling**



- Data Source: Satellite Imagery,
  - + Human inhabited areas & activities,
  - + Human Trajectory & Mobility
- Lacks Explainability in Natural Language





- Data Source: Satellite Imagery,
  - Human inhabitated areas & activities,
  - Human Trajectory & Mobility
  - + Textual Modality
- RQs:
  - Can textual data complement Satellite Imagery? If so, in what ways?

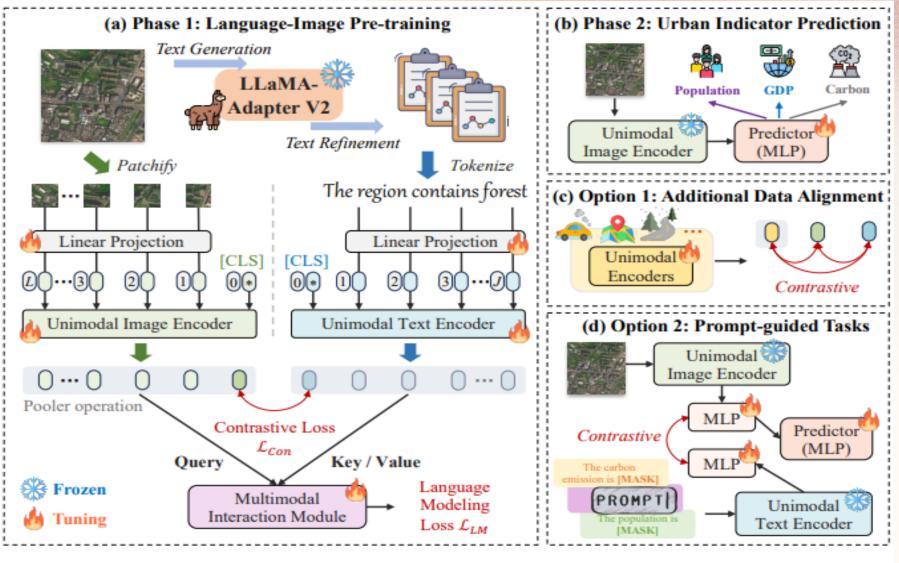


Figure 2: Overall framework of the proposed UrbanCLIP.

- Encoder-Decoder • Architecture
- **Two Unimodal Encoders:** • Image (ViT) & Text (Decoder-only)
- **Contrastive Loss between** • Vision and Text Modalities
- **Decoder: Cross Attention**  $\bullet$ between Image and Text **Representation with** Language Modeling Loss

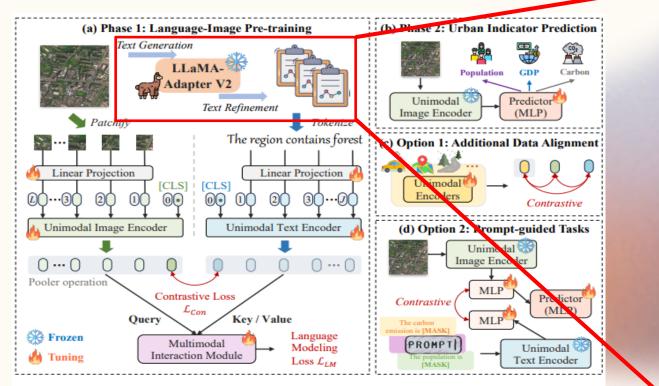
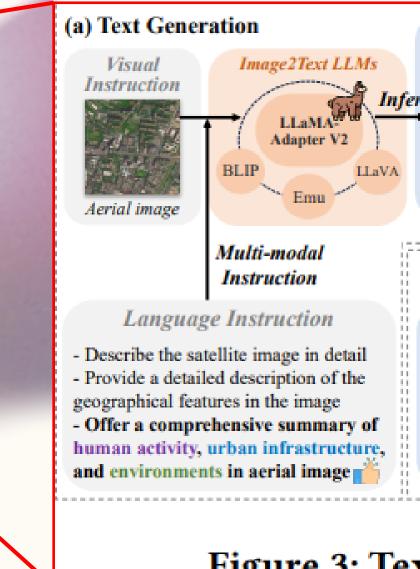


Figure 2: Overall framework of the proposed UrbanCLIP.



Source: UrbanCLIP: Learning Text-Enhanced Urban Region Profiling with Contrastive Language-Image Pretraining from the Web

**Generated Text:** The image is a satellite view of a large city with a mix of residential and commercial buildings. The image features a large body of water, possibly a river or a lake, running through the city. The city is filled with various buildings, including apartment complexes, office buildings, and other structures. The streets are lined with trees, adding a touch of greenery to the urban landscape. There are several cars and trucks visible on the streets, indicating that the city is bustling with activity. The image offers a comprehensive view of eity's layout and infrastructure, showing its diverse architecture and the presence of vehicles in its streets.

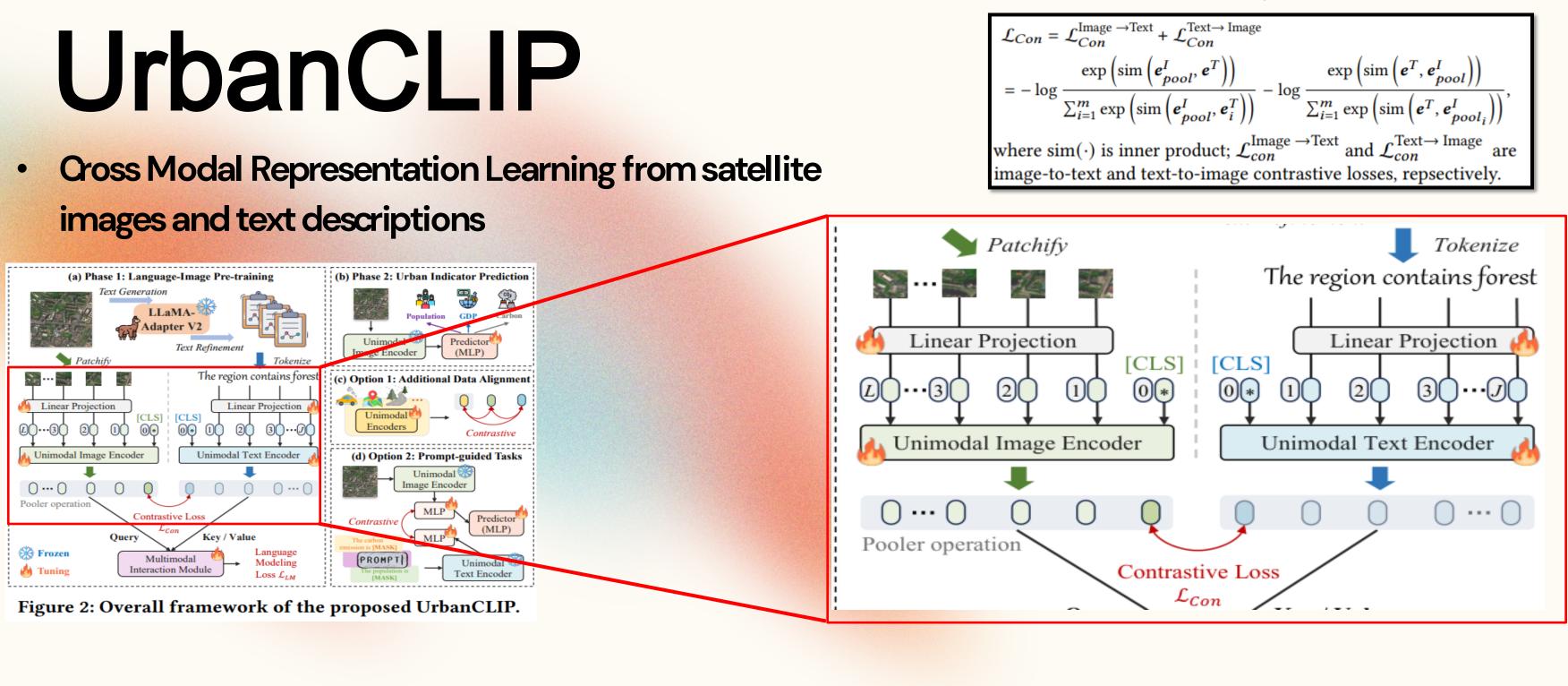
### (b) Text Refinement

High-quality Summary (Unfactual / Vague expression)

Filtering

The image is a satellite view of a large city with a mix of residential and commercial buildings. The city is filled with various buildings, including apartment complexes, office buildings, and other structures. The streets are lined with trees, adding a touch of greenery to the urban landscape. There are several cars and trucks visible on the streets, indicating that the city is bustling with activity.

### Figure 3: Text generation and refinement.



Source: UrbanCLIP: Learning Text-Enhanced Urban Region Profiling with Contrastive Language-Image Pretraining from the Web

### Modality Alignment Task

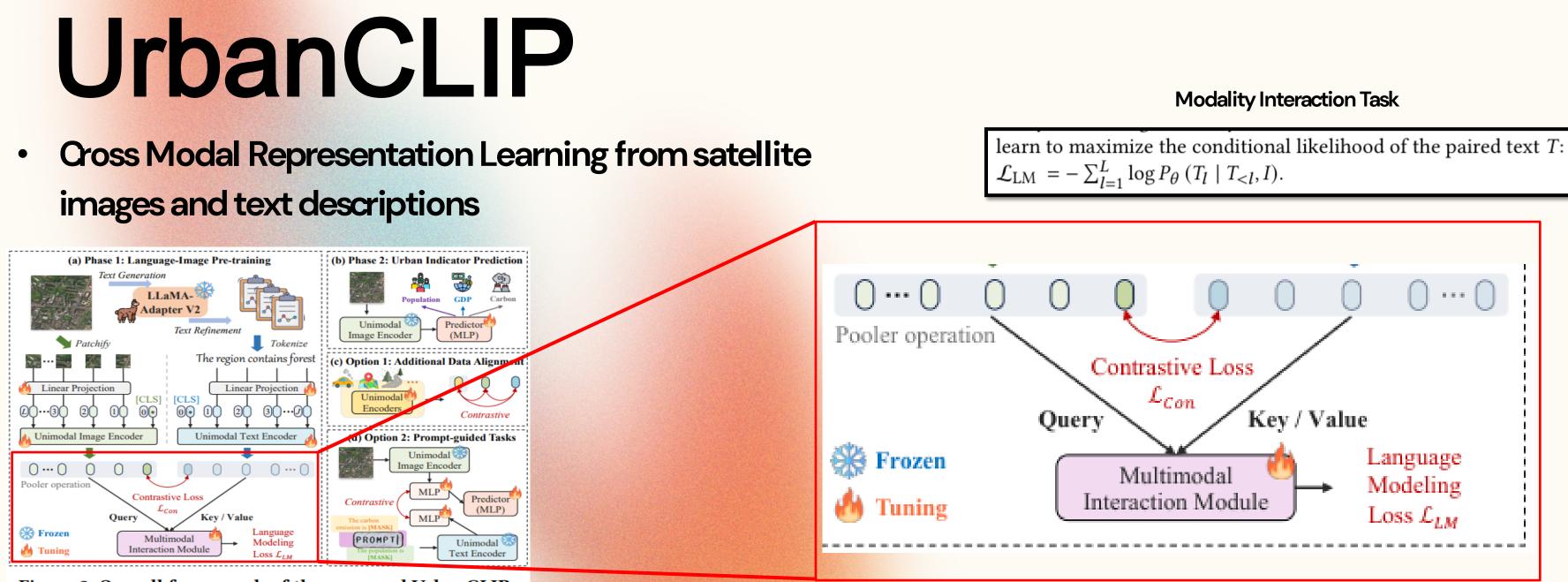
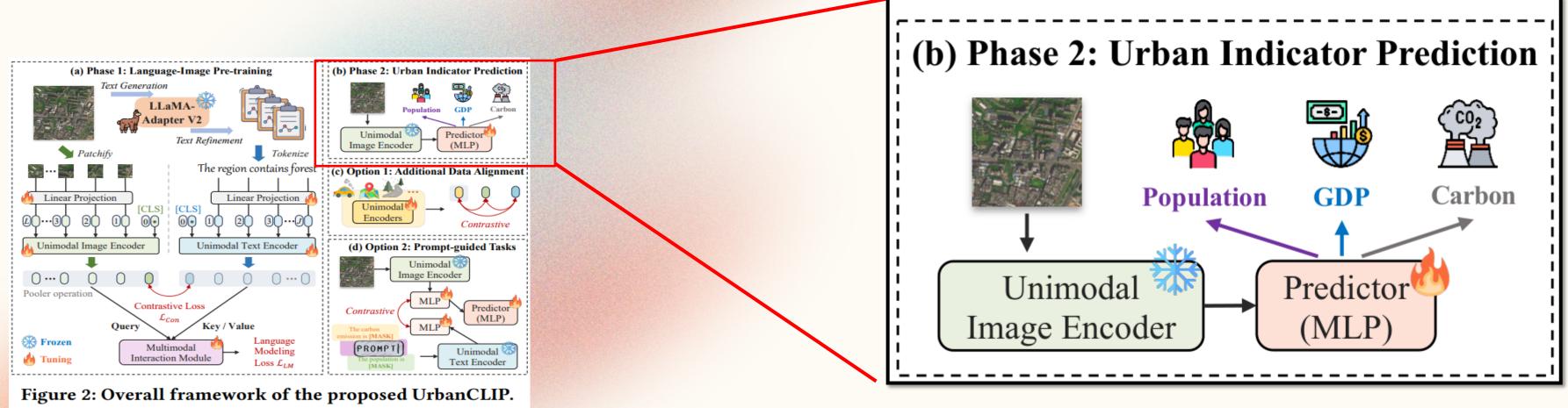


Figure 2: Overall framework of the proposed UrbanCLIP.

### Urban Indicator Prediction



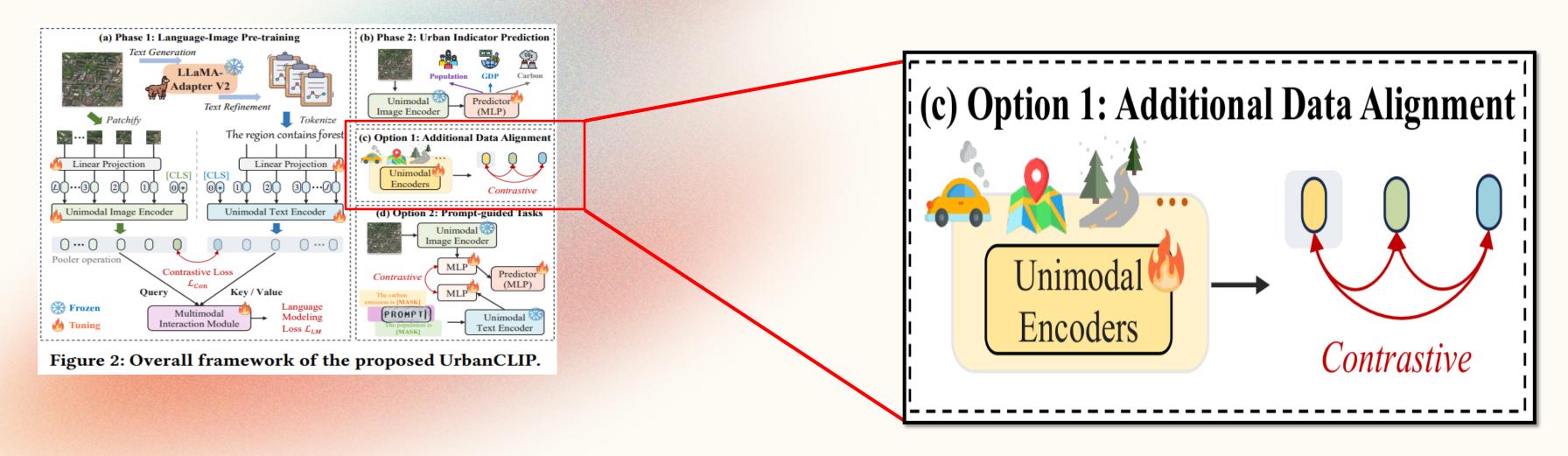
Source: UrbanCLIP: Learning Text-Enhanced Urban Region Profiling with Contrastive Language-Image Pretraining from the Web

### **Pre-training Objective**

$$\mathcal{L}_{\text{Total}} = \lambda_{\text{Con}} \cdot \mathcal{L}_{\text{Con}} + \lambda_{\text{LM}} \cdot \mathcal{L}_{\text{LM}},$$

### Modality Alignment Task

Multiple modality alignment and integration

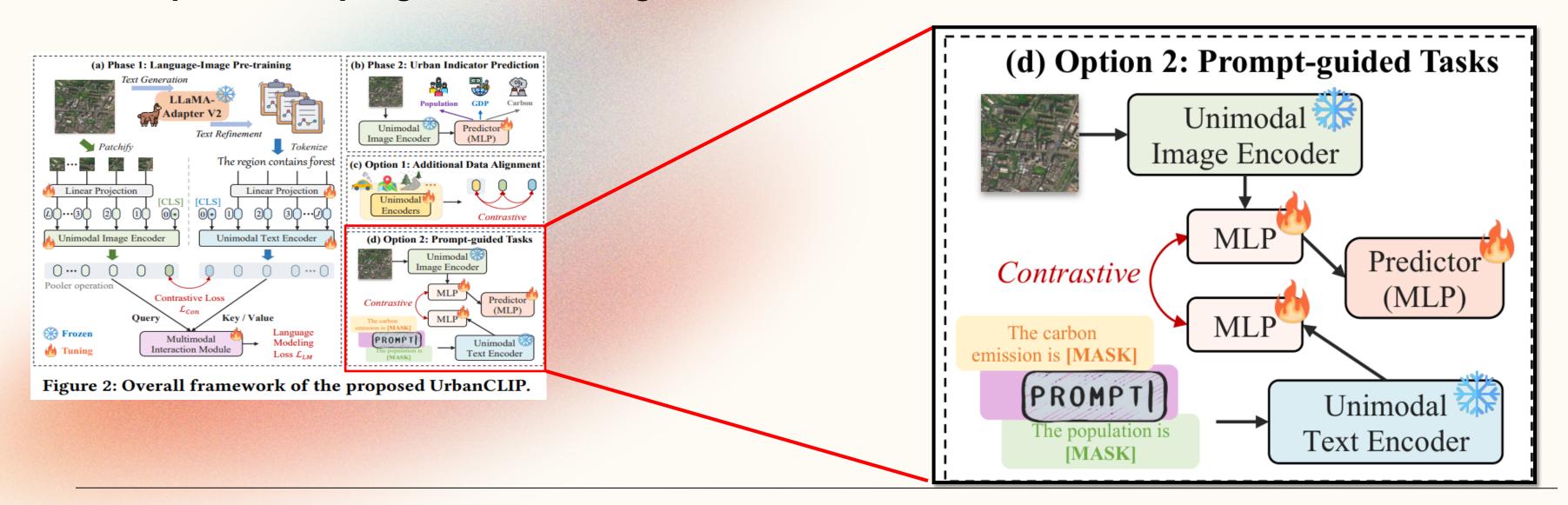


Source: UrbanCLIP: Learning Text-Enhanced Urban Region Profiling with Contrastive Language-Image Pretraining from the Web

Multimodality contrastive learning

- Satellite Images
- Text Description
- POI: parks, roads

Multiple modality alignment and integration



Source: UrbanCLIP: Learning Text-Enhanced Urban Region Profiling with Contrastive Language-Image Pretraining from the Web

Instruction Tuning the pre-trained Unimodal Image-Text Encoders for regression tasks

## Dataset & Metrics

- Satellite Imagery : Baidu Map API (256x256; 13 meters per pixel; 1 km<sup>2</sup>)  $\bullet$
- Textual Description : Generated by LLaMA-Adapter V2 lacksquare
- Urban Indicator : Population [WorldPop], GDP [2], Carbon Emission [ODIAC] lacksquare
  - **Cities: Beijing, Shanghai, zuangzhou, and Shenzhen**

|           | Table 1:                    | Dataset statist   | ics.        |           |   |
|-----------|-----------------------------|-------------------|-------------|-----------|---|
| Dataset   | Cove                        | erage             | #Satellite  | #Location | • |
| Dataset   | Bottom-left Top-right Image | Image             | Description |           |   |
| Beijing   | 39.75°N, 116.03°E           | 40.15°N, 116.79°E | 4,592       | 20,642    |   |
| Shanghai  | 30.98°N, 121.10°E           | 31.51°N, 121.80°E | 5,244       | 23,455    |   |
| Guangzhou | 22.94°N, 113.10°E           | 23.40°N, 113.68°E | 3,402       | 15,539    |   |
| Shenzhen  | 22.45°N, 113.75°E           | 22.84°N, 114.62°E | 4,324       | 18,113    |   |

### ction performance:

### Source:

UrbanCLIP: Learning Text-Enhanced Urban Region Profiling with Contrastive Language-Image Pretraining from the Web [1] WorldPop, open data for spatial demography. Scientific data 4, 1 (2017), 1–4

[2]Forecasting China's GDP at the pixel level using nighttime lights time series and population images. GIScience & Remote Sensing z4, 3 (2017)

[3] The Open-source Data Inventory for Anthropogenic CO 2, version 2016 (ODIAC2016), The Earth System Science Data.

### **Metrics**

Coefficient of determination (<mark>R²↑</mark>), Rooted mean squared error (<mark>RMSE ↓</mark>), Mean absolute error (<mark>MAE ↓</mark>)

| Dataset     |       | Beijing |        |        |          |       |       |       |       | Shanghai |        |        |       |          |       |       |       |       |
|-------------|-------|---------|--------|--------|----------|-------|-------|-------|-------|----------|--------|--------|-------|----------|-------|-------|-------|-------|
| Model       |       | Carbon  |        | Pe     | opulatio | n     |       | GDP   |       |          | Carbon |        | Р     | opulatio | n     |       | GDP   |       |
| Model       | $R^2$ | RMSE    | MAE    | $R^2$  | RMSE     | MAE   | $R^2$ | RMSE  | MAE   | $R^2$    | RMSE   | MAE    | $R^2$ | RMSE     | MAE   | $R^2$ | RMSE  | MAE   |
| Autoencoder | 0.099 | 0.936   | 0.621  | 0.094  | 0.988    | 0.712 | 0.115 | 1.603 | 0.858 | 0.119    | 0.968  | 0.617  | 0.101 | 0.967    | 0.800 | 0.077 | 1.782 | 0.900 |
| PCA         | 0.124 | 0.921   | 0.598  | 0.109  | 0.968    | 0.700 | 0.102 | 1.696 | 0.882 | 0.123    | 0.952  | 0.588  | 0.131 | 0.958    | 0.802 | 0.103 | 1.702 | 0.890 |
| ResNet-18   | 0.393 | 0.599   | 0.411  | 0.202  | 0.858    | 0.680 | 0.203 | 1.280 | 0.758 | 0.451    | 0.512  | 0.460  | 0.233 | 0.852    | 0.692 | 0.217 | 1.297 | 0.777 |
| Tile2Vec    | 0.599 | 0.512   | 0.468  | 0.204  | 0.813    | 0.635 | 0.182 | 1.356 | 0.792 | 0.572    | 0.462  | 0.390  | 0.249 | 0.801    | 0.620 | 0.169 | 1.380 | 0.806 |
| READ        | 0.284 | 0.678   | 0.545  | 0.301  | 0.813    | 0.632 | 0.208 | 1.281 | 0.759 | 0.399    | 0.588  | 0.527  | 0.322 | 0.801    | 0.600 | 0.229 | 1.296 | 0.773 |
| PG-SimCLR   | 0.613 | 0.489   | 0.360  | 0.362  | 0.799    | 0.599 | 0.317 | 1.114 | 0.688 | 0.597    | 0.442  | 0.356  | 0.410 | 0.790    | 0.584 | 0.319 | 1.181 | 0.725 |
| UrbanCLIP   | 0.662 | 0.327   | 0.302  | 0.407  | 0.788    | 0.589 | 0.319 | 1.102 | 0.684 | 0.652    | 0.331  | 0.300  | 0.429 | 0.778    | 0.578 | 0.320 | 1.119 | 0.702 |
| Improvement | 8.11% | 33.22%  | 16.00% | 12.35% | 1.39%    | 1.69% | 0.73% | 1.04% | 0.62% | 9.28%    | 25.12% | 15.73% | 4.59% | 1.54%    | 1.06% | 0.38% | 5.28% | 3.06% |

| Table 2: Urban indicators prediction results in four datasets. The best results are in bold, and the second-best results are |
|------------------------------------------------------------------------------------------------------------------------------|
| underlined. The last row indicates the relative improvement in percentage.                                                   |

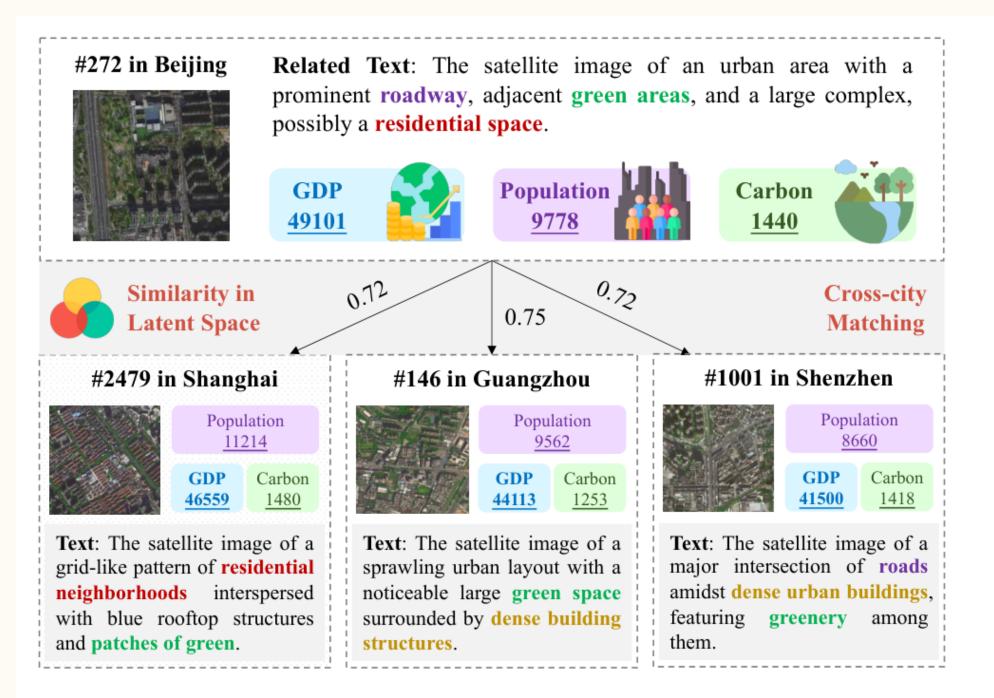
- best

| Dataset     |        |       |       | Gu         | angzhou | l     |       |       |       | Shenzhen |        |       |            |       |       |       |       |      |
|-------------|--------|-------|-------|------------|---------|-------|-------|-------|-------|----------|--------|-------|------------|-------|-------|-------|-------|------|
| Madal       | Carbon |       |       | Population |         |       |       | GDP   |       |          | Carbon |       | Population |       | n     | GDP   |       |      |
| Model       | $R^2$  | RMSE  | MAE   | $R^2$      | RMSE    | MAE   | $R^2$ | RMSE  | MAE   | $R^2$    | RMSE   | MAE   | $R^2$      | RMSE  | MAE   | $R^2$ | RMSE  | MAI  |
| Autoencoder | 0.068  | 0.992 | 0.736 | 0.163      | 0.991   | 0.833 | 0.122 | 1.753 | 0.887 | 0.099    | 0.970  | 0.704 | 0.122      | 0.989 | 0.817 | 0.093 | 1.901 | 0.89 |
| PCA         | 0.087  | 0.989 | 0.688 | 0.179      | 0.989   | 0.812 | 0.134 | 1.693 | 0.862 | 0.133    | 0.956  | 0.677 | 0.134      | 0.977 | 0.810 | 0.087 | 1.902 | 0.89 |
| ResNet-18   | 0.388  | 0.500 | 0.513 | 0.244      | 0.883   | 0.711 | 0.215 | 1.290 | 0.791 | 0.409    | 0.556  | 0.503 | 0.250      | 0.880 | 0.701 | 0.165 | 1.398 | 0.84 |
| Tile2Vec    | 0.482  | 0.499 | 0.501 | 0.269      | 0.855   | 0.683 | 0.173 | 1.346 | 0.799 | 0.466    | 0.501  | 0.486 | 0.289      | 0.841 | 0.649 | 0.123 | 1.500 | 0.88 |
| READ        | 0.353  | 0.589 | 0.589 | 0.301      | 0.849   | 0.633 | 0.200 | 1.289 | 0.766 | 0.378    | 0.600  | 0.551 | 0.301      | 0.811 | 0.631 | 0.186 | 1.356 | 0.82 |
| PG-SimCLR   | 0.503  | 0.401 | 0.401 | 0.370      | 0.823   | 0.603 | 0.309 | 1.109 | 0.702 | 0.523    | 0.412  | 0.417 | 0.386      | 0.791 | 0.610 | 0.290 | 1.172 | 0.74 |
| UrbanCLIP   | 0.587  | 0.390 | 0.389 | 0.388      | 0.801   | 0.602 | 0.309 | 1.109 | 0.700 | 0.597    | 0.373  | 0.387 | 0.391      | 0.791 | 0.602 | 0.293 | 1.153 | 0.73 |
| Improvement | 16.77% | 2.65% | 3.02% | 4.89%      | 2.70%   | 0.10% | 0.10% | 0.04% | 0.37% | 14.12%   | 9.58%  | 7.27% | 1.48%      | 0.04% | 1.39% | 0.86% | 1.65% | 0.96 |

## Results

### UrbanCLIP consistently performed

### • Carbon > Population > GDP



- Transferability and explainability of UrbanCLIP
  - Urba <mark>spat</mark>
    - distributions among comparable
    - regions
    - Beijing (North)
    - Shanghai(East)
    - Guangzhou (South)
    - Shenzhen (South)

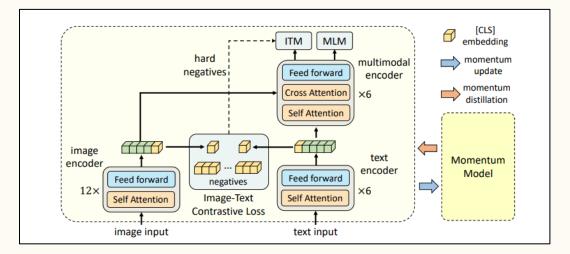
- UrbanCLIP can capture similar
- spatial characteristics and

## **Take Aways**

### Unidirectional Language Modeling

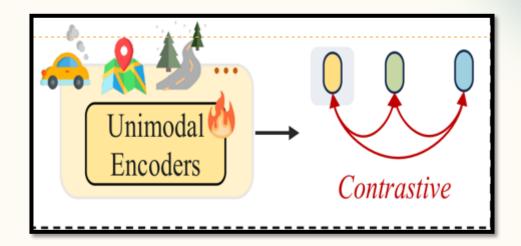
- Time Efficient
- Converts both Contrastive and Generative training in a single forward pass

**Bidirectional: Vision-**Language Learning [1]



### Supports flexible infusion of multiple modalities

- Plug and play integration



- Completely depends on Vision-Language Model for text description for satellite images
- Text refinement technique is : rule based. Rules were not shared and it may induce
- subjectivity and selective bias.

Source: [1] Align before Fuse: Vision and Language Representation Learning with Momentum Distillation

### $\boldsymbol{e}^{T} = \text{LayerNorm}\left(\boldsymbol{e}_{E}^{T} + \text{M-MSA}\left(\boldsymbol{e}_{E}^{T}\right)\right),$

**Decoder Only** Architecture for encoding Text

 Normally, BERT-style models with encoder only architectures are used Traditional bidirectional attention may encounter low-rank issues - Limited Generative Capabilities

### LIMITATIONS

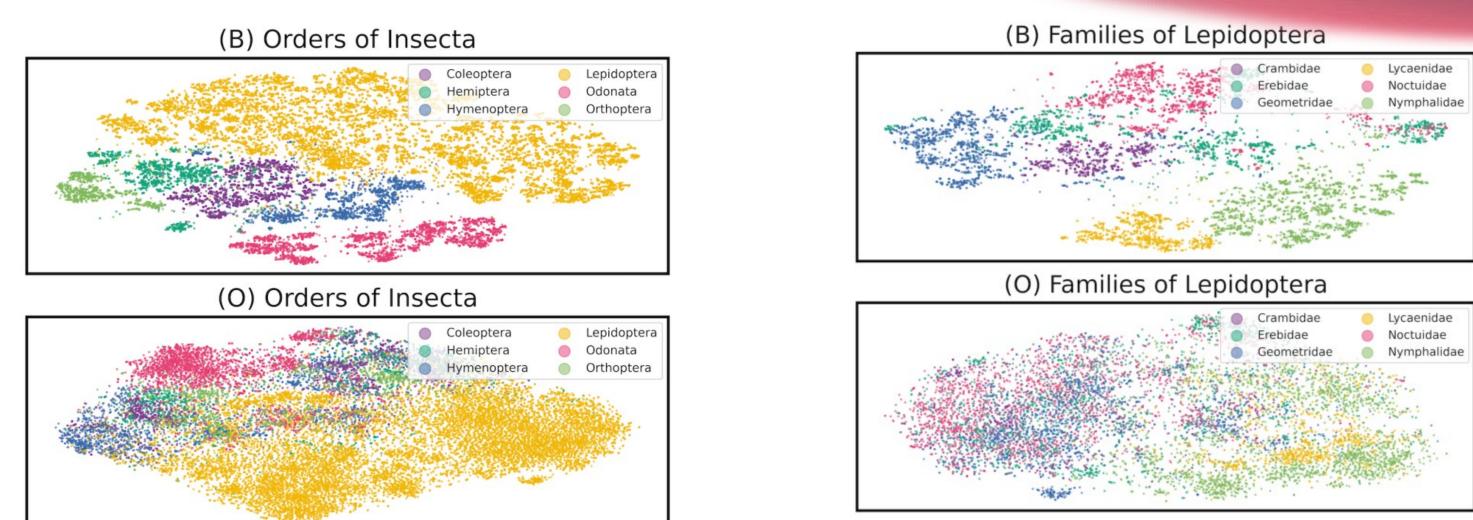
Needs frequent updates to pre-trained model to use in real-life applications

(3)

# Agenda

- UrbanCLIP: Learning Text–Enhanced Urban Region Profiling with Contrastive Language-Image Pretraining from the Web
- BIOCLIP: A Vision Foundation Model for the Tree of Life
- MMMU: A Massive Multi-discipline Multimodal Understanding and **Reasoning Benchmark for Expert AGI**

# **BioCLIP vs CLIP**



### TSNE-Visualization of image features, colored by taxonomic labels

Source: BIOCLIP: A Vision Foundation Model for the Tree of Life



# **Evolutionary Biology**

### **General Tasks**

- Species classification
- Individual identification
- Trait detection
- Understanding mechanisms of adaptation
- Abundance and population structure estimation
- **Biodiversity monitoring and** conservation

## Challenges / Motivation

- label data and train models.
- Existing biological datasets **lack** the necessary scale, diversity, or fine-grained taxonomic labels to train effective models.
- Current general vision models (like CLIP and OpenCLIP) fail to provide fine-grained distinctions needed for biological research
- **Need for Generalization** A useful model must lacksquareextend beyond the taxa it was trained on to cover the entire **tree of life** effectively.

Biologists **need significant ML expertise** to

# **BioCLIP: Vision Foundation** Model for Tree of Life

### Challenges / Motivation

- Biologists **need significant ML expertise** to label data and train models.
- Existing biological datasets **lack** the necessary scale, diversity, or fine-grained taxonomic labels to train effective models.
- Current general vision models (like CLIP and OpenCLIP) fail to provide fine-grained **distinctions** needed for biological research
- **Need for Generalization** A useful model must extend beyond the taxa it was trained on to cover the entire **tree of life** effectively.

- training.

### **Objective of BioCUP**

• Generalize to taxa not seen during

 Learn fine-grained representations of biological images.

• Perform well in low-data regimes

(zero-shot or few-shot learning).

# **BioCLIP: Overview**

### **Objective of BioCLIP**

- Generalize to taxa not seen during training.
- Learn fine-grained representations ulletof biological images.
- Perform well in low-data regimes (zero-shot or few-shot learning).

### Contributions

 TREEOFLIFE-10M Dataset; 454k Taxa; ML-ready **BIOCLIP Model;** Contrastive loss + taxonomic hierarchy • Comprehensive Benchmarking; classification, rare species classification **BioCLIP** learns hierarchical representation

# **BioCLIP: TreeOfLife 10M** dataset

## **Diversity Gap**

- Existing largest ML-ready Biology Dataset: iNat21 [1]; 2.7M images – 10k **Species**
- IUCN [2] report (2022): 2M Species {Bird & Reptile having 10K species each}

- iNat21 (training split) Encyclopedia of Life (EOL) – 6.6M images, adding 440K taxa • 1M+ [insect species] 10K+ [birds species] 10K+ [reptiles species] • BIOSCAN-1M [3]: 1M lab images of insects from 494 families Taxonomic inconsistencies across sources addressed by unifying labels using ITIS [4], EOL[2], and iNaturalist [5].

Source: BIOCLIP: A Vision Foundation Model for the Tree of Life. [1] Building a bird recognition app and large scale dataset with citizen scientists: The fine print in fine-grained dataset collection. In CVPR (2015) [2] International Union for

Conservation of Nature [3] A step towards worldwide biodiversity assessment: The BIOSCAN-1M insect dataset. [NeruIPS 2024] [4] Integrated Taxonomic Information System [5] The iNaturalist species classification and

### Data Source + Curation

## **BioCLIP: TreeOfLife 10M** dataset Arthropoda Insecta

| Dataset        | Description                                                                                                            | Images | Unique Classes |
|----------------|------------------------------------------------------------------------------------------------------------------------|--------|----------------|
| iNat21         | Citizen scientist labeled image dataset from iNaturalist for fine-grained classification.                              | 2.7M   | 10,000         |
| BIOSCAN-1M     | Expert labeled image dataset of insects for classification.                                                            | 1.1M   | 7,831          |
| EOL            | A new dataset with citizen scientist images sourced from Encyclopedia of Life and taxonomic labels standardized by us. | 6.6M   | 448,910        |
| TREEOFLIFE-10M | Largest-to-date ML-ready dataset of biology images with taxonomic labels.                                              | 10.4M  | $454,\!103$    |

- 10+ million images, 454K+ unique taxonomic names.
- Phyla [1] Coverage: Includes insects, birds, reptiles, fungi, plants, and other taxa (visualized in treemap  $\rightarrow$ ).

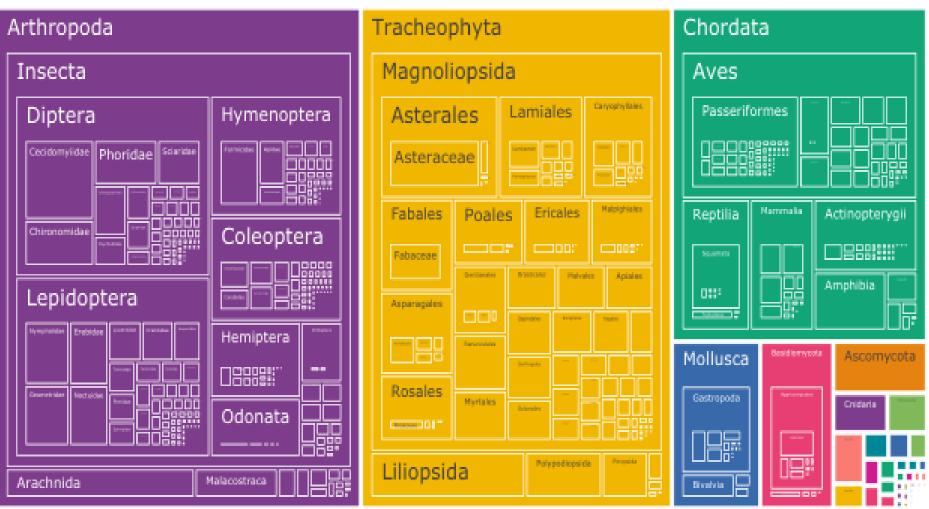


Figure 2. Treemap of the 108 phyla in TREEOFLIFE-10M. Different colors are different phyla; nested boxes represent classes, orders, and families. Box size, not number of inner boxes, represents relative number of samples.

# **BioCLIP: Modeling**

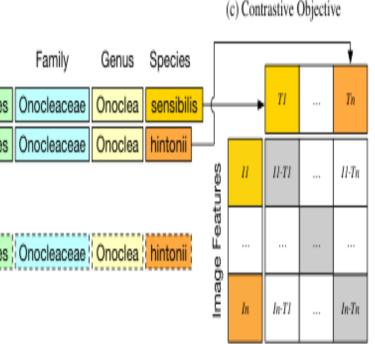
- Trains 2 Unimodal embeddings models [(Vision | Text) Encoders]
- Objectives
  - Maximize feature similarity of (Image, Text)<sup>+</sup> pairs<sup>\*</sup>
  - Minimize feature similarity of (Image, Text)<sup>-</sup> pairs<sup>\*</sup>

| (a) Taxonor | nic Labels        |                         |             |
|-------------|-------------------|-------------------------|-------------|
| Kingdom     | Phylum            | Class                   | Order       |
| Plantae     | Tracheophyta      | Polpodiopsida           | Polypodiale |
| Plantae     | Tracheophyta      | Polpodiopsida           | Polypodiale |
|             | ressive Represent | ations<br>Polpodiopsida | Polypodiale |
|             |                   |                         |             |

Figure 1. (a) Two taxa, or taxonomic labels, for two different plants, Onoclea sensibilis (d) and Onoclea hintonii (e). These taxa are identical except for the species. (b) The autoregressive text encoder naturally encodes the hierarchical structure of the taxonomy. See how the Order token(s) (Polypodiales) can incorporate information from the Kingdom, Phylum and Class tokens, but nothing later in the hierarchy. This helps align the visual representations to this same hierarchical structure (see §4.6). (c) These hierarchical representations of taxonomic labels are fed into the standard contrastive pre-training objective and are matched with image representations (d) and (e).

### How to make taxonomic structure?

Source: BIOCLIP: A Vision Foundation Model for the Tree of Life \* (+) means pairs are from training data, ( -) means pairs are from all other possible pairs in a batch.



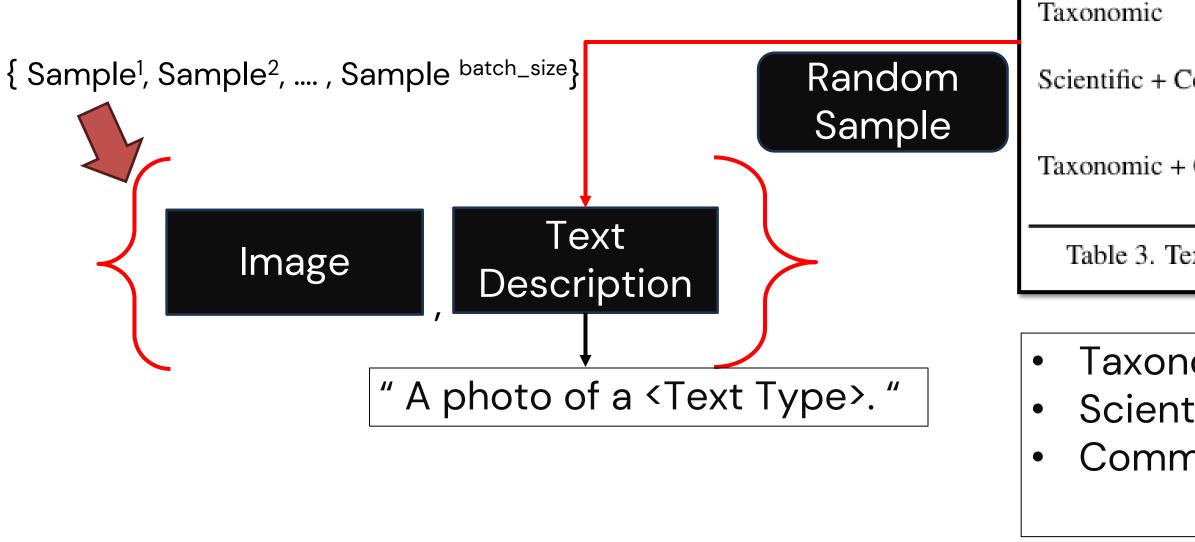


(d) Onoclea sensibilis (e) Onoclea hintonii

# **BioCLIP: Modeling**



• Mixed text-type training strategy



|        | Example                                                  |
|--------|----------------------------------------------------------|
|        | black-billed magpie<br>Pica hudsonia                     |
|        | Animalia Chordata Aves Passeriformes                     |
|        | Corvidae Pica hudsonia<br>Pica hudsonia with common name |
| Common | black-billed magpie                                      |
|        | Animalia Chordata Aves Passeriformes                     |
| Common | Corvidae Pica hudsonia with common                       |
|        | name black-billed magpie                                 |

Text Type

Common

Scientific

Table 3. Text types considered in the training of BIOCLIP.

Taxonomic: seven-level biology taxonomy Scientific name: genus and species Common name: Regular English Word

# **BioCLIP: Training Strategy**

| Pre-                | Image Encoder: ViT-B/16 [+ OpenAl<br>CLIP weights]          |   | • Same se                                                                                       |
|---------------------|-------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------|
| training<br>BioCLIP | Text Encoder: 77-token Causal<br>autoregressive transformer |   | • Random                                                                                        |
| -                   | Data: TREEOFLIFE-10M                                        |   | <ul><li>class</li><li>Obtain l</li></ul>                                                        |
| -                   | Epochs: 100; Batch size: 32768<br>samples                   | _ | <ul><li>trained</li><li>Centroid</li></ul>                                                      |
|                     | Hardware: 8x – NVIDIA A100–80GB<br>GPU                      |   | <ul> <li>Vector of<br/>Apply m<br/>normaliz<br/>vector)</li> <li>Choose<br/>test vec</li> </ul> |

- Zero-Shot Learning e settings as CLIP Few-shot Learning
- omly sample k examples for each
- in k image embeddings from preed models
- roid of each class: Average Feature or of K embeddings
- y mean subtraction + L2
- alization to (centroid | test feature or)
- ose Class with nearest centroid to vector

# **BioCLIP: Evaluation Dataset**

|                | Name           | Description                                                                                                       | Examples  | Classes | Labels     |
|----------------|----------------|-------------------------------------------------------------------------------------------------------------------|-----------|---------|------------|
| s              | Birds 525      | Scraped dataset of bird images from web search. [68]                                                              | 89,885    | 525     | Taxonomic  |
| Animals        | Plankton       | Expert-labeled in situ images of plankton [35].                                                                   | 4,080     | 102     | Mixed      |
| Ani            | Insects        | Expert and volunteer-labeled in-the-wild citizen science images of insects [74].                                  | $4,\!680$ | 117     | Scientific |
| 4              | Insects 2      | Mixed common and scientific name classification for insect pests [91].                                            | 4,080     | 102     | Mixed      |
| 19.            | PlantNet       | Citizen science species-labeled plant images, some drawings [27].                                                 | 1,000     | 25      | Scientific |
| Fui            | Fungi          | Expert-labeled images of Danish fungi [66].                                                                       | 1,000     | 25      | Scientific |
| Plants & Fungi | PlantVillage   | Museum-style leaf specimens labeled with common names [25].                                                       | 1,520     | 38      | Common     |
| ants           | Medicinal Leaf | Species classification of leaves from mature, healthy medicinal plants [71].                                      | 1,040     | 26      | Scientific |
| Ы              | PlantDoc       | 17 diseases for 13 plant species [76].                                                                            | 1,080     | 27      | Common     |
|                | RARE SPECIES   | Subset of species in the IUCN Red List categories: Near Threatened through Extinct in the Wild (iucnredlist.org). | 12,000    | 400     | Taxonomic  |

|                      |           | Ani      | mals    |           |          | Pla         | ants & F     | ungi        |          |              |             |                  |
|----------------------|-----------|----------|---------|-----------|----------|-------------|--------------|-------------|----------|--------------|-------------|------------------|
| Model                | Birds 525 | Plankton | Insects | Insects 2 | PlantNet | Fungi       | PlantVillage | Med. Leaf   | PlantDoc | Rare Species | М           | ean ( $\Delta$ ) |
| Random Guessing      | 0.2       | 1.2      | 1.0     | 1.0       | 4.0      | 4.0         | 2.6          | 4.0         | 3.7      | 0.3          | 2.2         |                  |
| Zero-Shot Classifica | tion      |          |         |           |          |             |              |             |          |              |             |                  |
| CLIP                 | 49.9      | 3.2      | 9.1     | 9.8       | 58.5     | 10.2        | 5.4          | 15.9        | 26.1     | 31.8         | 21.9        | _                |
| OpenCLIP             | 54.7      | 2.2      | 6.5     | 9.6       | 50.2     | 5.7         | 8.0          | 12.4        | 25.8     | 29.8         | 20.4        | -1.5             |
| BIOCLIP              | 72.1      | 6.1      | 34.8    | 20.4      | 91.4     | 40.7        | <b>24.4</b>  | <b>38.6</b> | 28.4     | 38.0         | <b>39.4</b> | +17.5            |
| - iNat21 Only        | 56.1      | 2.6      | 30.7    | 11.5      | 88.2     | <b>43.0</b> | 18.4         | 25.6        | 20.5     | 21.3         | 31.7        | +9.8             |
| One-Shot Classifica  | tion      |          |         |           |          |             |              |             |          |              |             |                  |
| CLIP                 | 43.7      | 25.1     | 21.6    | 13.7      | 42.1     | 17.2        | 49.7         | 70.1        | 24.8     | 28.5         | 33.6        | _                |
| OpenCLIP             | 53.7      | 32.3     | 23.2    | 14.3      | 45.1     | 18.4        | 53.6         | 71.2        | 26.8     | 29.2         | 36.7        | +3.1             |
| Supervised-IN21K     | 60.2      | 22.9     | 14.7    | 14.4      | 46.7     | 16.9        | 62.3         | 58.6        | 27.7     | 28.0         | 35.2        | +1.6             |
| DINO                 | 40.5      | 37.0     | 23.5    | 16.4      | 30.7     | 20.0        | 60.0         | 79.2        | 23.7     | 31.0         | 36.2        | +2.6             |
| BIOCLIP              | 71.8      | 30.6     | 57.4    | 20.4      | 64.5     | 40.3        | 58.8         | 84.3        | 30.7     | <b>44.9</b>  | 50.3        | +16.7            |
| - iNat21 Only        | 74.8      | 29.6     | 53.9    | 19.7      | 67.4     | 35.5        | 55.2         | 75.1        | 27.8     | 36.9         | 47.5        | +13.9            |
| Five-Shot Classifica | tion      |          |         |           |          |             |              |             |          |              |             |                  |
| CLIP                 | 73.5      | 41.2     | 39.9    | 24.6      | 65.2     | 27.9        | 71.8         | 89.7        | 35.2     | 46.0         | 51.5        | _                |
| OpenCLIP             | 81.9      | 52.5     | 42.6    | 25.0      | 68.0     | 30.6        | 77.8         | 91.3        | 42.0     | 47.4         | 55.9        | +4.4             |
| Supervised-IN21K     | 83.9      | 39.2     | 32.0    | 25.4      | 70.9     | 30.9        | 82.4         | 82.3        | 44.7     | 47.3         | 53.9        | +2.4             |
| DINO                 | 70.8      | 56.9     | 46.3    | 28.6      | 50.3     | 34.1        | 82.1         | 94.9        | 40.3     | 50.1         | 55.4        | +3.9             |
| BIOCLIP              | 90.0      | 49.3     | 77.8    | 33.6      | 85.6     | 62.3        | 80.9         | 95.9        | 47.5     | 65.7         | 68.8        | +17.3            |
| - iNat21 Only        | 90.1      | 48.2     | 73.7    | 32.1      | 84.7     | 55.6        | 77.2         | 93.5        | 41.0     | 55.6         | 65.1        | +13.6            |

Table 4. Zero-, one- and five-shot classification top-1 accuracy for different models. Bold indicates best accuracy. All models use the same ViT-B/16 architecture. "iNat21 Only" follows the same procedure as BIOCLIP but uses iNat21 instead of TREEOFLIFE-10M.  $\Delta$ denotes the difference in mean accuracy with CLIP. Supervised-IN21K [78] and DINO [15] are vision-only models and cannot do zero-shot classification.

## Results

BIOCLIP's strong zero-shot performance on the diverse tasks and classes in TREEOFLIFE-10M.

| телі | Type |  |
|------|------|--|
| Com  | mon  |  |

Scientific + Common

Taxonomic + Commor

| Dataset     | Train↓Test– | > Com | Sci  | Tax  | Sci+Con     | n Tax+Com |
|-------------|-------------|-------|------|------|-------------|-----------|
|             | Com         | 24.9  | 9.5  | 10.8 | 22.3        | 21.0      |
| ToL 1M      | Sci         | 11.0  | 22.3 | 4.5  | 21.5        | 8.0       |
|             | Tax         | 11.8  | 10.1 | 26.6 | 16.0        | 24.8      |
| ToL-1M      | Sci+Com     | 24.5  | 12.9 | 12.6 | 28.0        | 24.9      |
|             | Tax+Com     | 20.5  | 8.0  | 19.7 | 24.0        | 30.4      |
|             | Mixture     | 26.1  | 24.9 | 26.7 | <b>29.5</b> | 30.9      |
| iNat21-2.7N | 4 Mixture   | 20.4  | 14.7 | 15.6 | 20.9        | 21.3      |
| ToL-10M     | Mixture     | 31.6  | 30.1 | 34.1 | 37.0        | 38.0      |

Table 5. Zero-shot accuracy on species not seen during training (RARE SPECIES task). Different rows and columns indicate different text types during training and test time, respectively. **Blue** indicates best accuracy and Orange indicates second-best. Using the taxonomic name over the scientific name always improves accuracy  $(22.3 \rightarrow 26.6 \text{ and } 28.0 \rightarrow 30.4)$ . The final rows use the full iNat21 dataset and TREEOFLIFE-10M for reference.

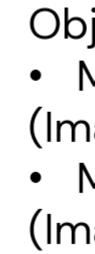
## Results

Using **mixed text types** for training yields consistently strong performance across all text types during testing.

| Objective           | Mean 1-Shot | Mean 5-shot |
|---------------------|-------------|-------------|
| Cross-entropy       | 16.5        | 26.2        |
| Hier. cross-entropy | 19.3        | 30.5        |
| CLIP                | 44.7        | 63.8        |

Table 6. One- and five-shot classification top-1 accuracy for different pre-training objectives on TREEOFLIFE-1M. Results are macro-averaged over all the test sets in Tab. 4.





Source: BIOCLIP: A Vision Foundation Model for the Tree of Life \* (+) means pairs are from training data, ( -) means pairs are from all other possible pairs in a batch.

## Results

CLIP objective massively outperforms both baselines

Objectives Maximize feature similarity of (Image, Text)<sup>+</sup> pairs<sup>\*</sup> Minimize feature similarity of (Image, Text)<sup>-</sup> pairs<sup>\*</sup>

|                      |             | Animals  |         |           |          | Plants & Fungi |              |           |          |              |             |                  |
|----------------------|-------------|----------|---------|-----------|----------|----------------|--------------|-----------|----------|--------------|-------------|------------------|
| Model                | Birds 525   | Plankton | Insects | Insects 2 | PlantNet | Fungi          | PlantVillage | Med. Leaf | PlantDoc | Rare Species | М           | ean ( $\Delta$ ) |
| Random Guessing      | 0.2         | 1.2      | 1.0     | 1.0       | 4.0      | 4.0            | 2.6          | 4.0       | 3.7      | 0.3          | 2.2         |                  |
| Zero-Shot Classifica | ition       |          |         |           |          |                |              |           |          |              |             |                  |
| CLIP                 | 49.9        | 3.2      | 9.1     | 9.8       | 58.5     | 10.2           | 5.4          | 15.9      | 26.1     | 31.8         | 21.9        | _                |
| OpenCLIP             | 54.7        | 2.2      | 6.5     | 9.6       | 50.2     | 5.7            | 8.0          | 12.4      | 25.8     | 29.8         | 20.4        | -1.5             |
| BIOCLIP              | 72.1        | 6.1      | 34.8    | 20.4      | 91.4     | 40.7           | 24.4         | 38.6      | 28.4     | 38.0         | <b>39.4</b> | +17.5            |
| - iNat21 Only        | 56.1        | 2.6      | 30.7    | 11.5      | 88.2     | 43.0           | 18.4         | 25.6      | 20.5     | 21.3         | 31.7        | +9.8             |
| One-Shot Classifica  | tion        |          |         |           |          |                |              |           |          |              |             |                  |
| CLIP                 | 43.7        | 25.1     | 21.6    | 13.7      | 42.1     | 17.2           | 49.7         | 70.1      | 24.8     | 28.5         | 33.6        | _                |
| OpenCLIP             | 53.7        | 32.3     | 23.2    | 14.3      | 45.1     | 18.4           | 53.6         | 71.2      | 26.8     | 29.2         | 36.7        | +3.1             |
| Supervised-IN21K     | 60.2        | 22.9     | 14.7    | 14.4      | 46.7     | 16.9           | 62.3         | 58.6      | 27.7     | 28.0         | 35.2        | +1.6             |
| DINO                 | 40.5        | 37.0     | 23.5    | 16.4      | 30.7     | 20.0           | 60.0         | 79.2      | 23.7     | 31.0         | 36.2        | +2.6             |
| BIOCLIP              | 71.8        | 30.6     | 57.4    | 20.4      | 64.5     | 40.3           | 58.8         | 84.3      | 30.7     | 44.9         | 50.3        | +16.7            |
| - iNat21 Only        | <b>74.8</b> | 29.6     | 53.9    | 19.7      | 67.4     | 35.5           | 55.2         | 75.1      | 27.8     | 36.9         | 47.5        | +13.9            |
| Five-Shot Classifica | tion        |          |         |           |          |                |              |           |          |              |             |                  |
| CLIP                 | 73.5        | 41.2     | 39.9    | 24.6      | 65.2     | 27.9           | 71.8         | 89.7      | 35.2     | 46.0         | 51.5        | _                |
| OpenCLIP             | 81.9        | 52.5     | 42.6    | 25.0      | 68.0     | 30.6           | 77.8         | 91.3      | 42.0     | 47.4         | 55.9        | +4.4             |
| Supervised-IN21K     | 83.9        | 39.2     | 32.0    | 25.4      | 70.9     | 30.9           | 82.4         | 82.3      | 44.7     | 47.3         | 53.9        | +2.4             |
| DINO                 | 70.8        | 56.9     | 46.3    | 28.6      | 50.3     | 34.1           | 82.1         | 94.9      | 40.3     | 50.1         | 55.4        | +3.9             |
| BIOCLIP              | 90.0        | 49.3     | 77.8    | 33.6      | 85.6     | 62.3           | 80.9         | 95.9      | 47.5     | 65.7         | 68.8        | +17.3            |
| - iNat21 Only        | 90.1        | 48.2     | 73.7    | 32.1      | 84.7     | 55.6           | 77.2         | 93.5      | 41.0     | 55.6         | 65.1        | +13.6            |

- Task: plant diagnosis with the PlantVillage and PlantDoc (has diseased plant image)
- BIOCLIP has learned useful visual representations that are useful even with only one labeled example

## Results

Can BIOCLIP Classify More Than Species?

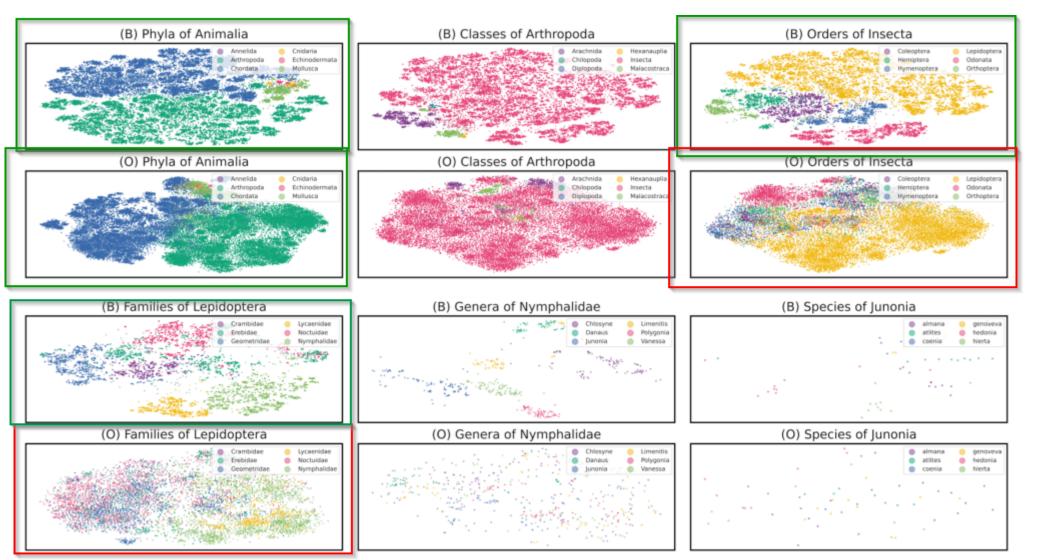


Figure 3. T-SNE visualization of image features, colored by taxonomic labels. BIOCLIP (B) is visualized in the first and third row and OpenAI's CLIP (O) is visualized in the second and fourth rows. BIOCLIP's features better preserve the hierarchical structure: while both BIOCLIP and CLIP cleanly separate the phyla in the Animalia Kingdom (top left), only BIOCLIP successfully separates the orders in the Insecta Class (top right) and the families in the Lepidoptera Order (bottom left).

## Results

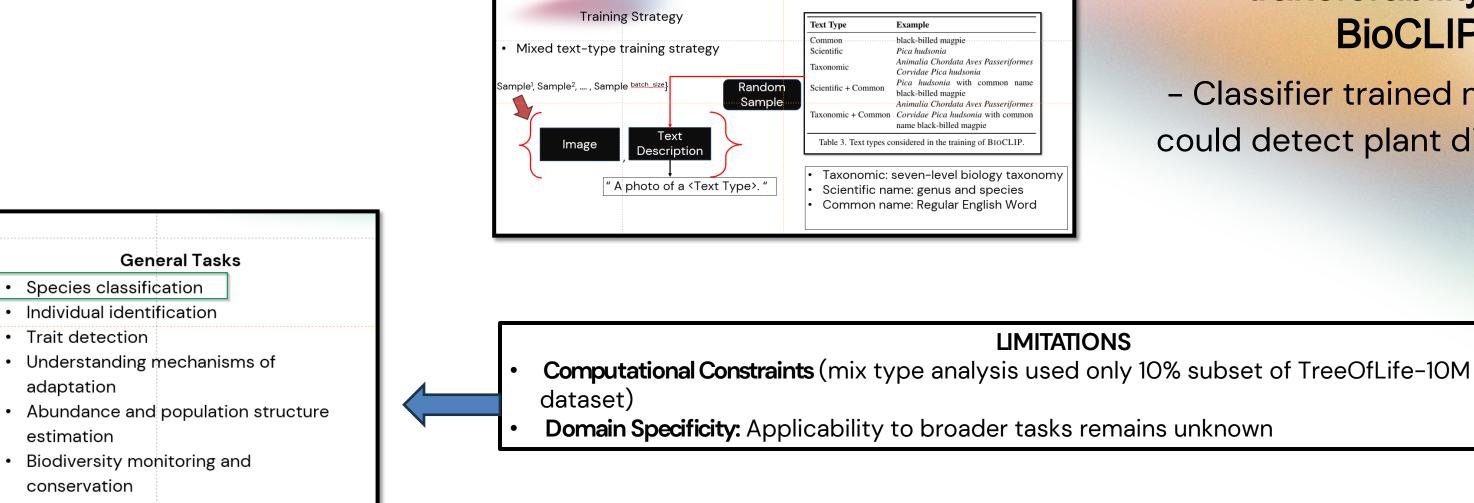
**Does BIOCLIP Learn the** Hierarchy?

Task: plant diagnosis with the PlantVillage and PlantDoc (has diseased plant image) **BIOCLIP** has learned useful visual representations that are useful even with only one labeled example

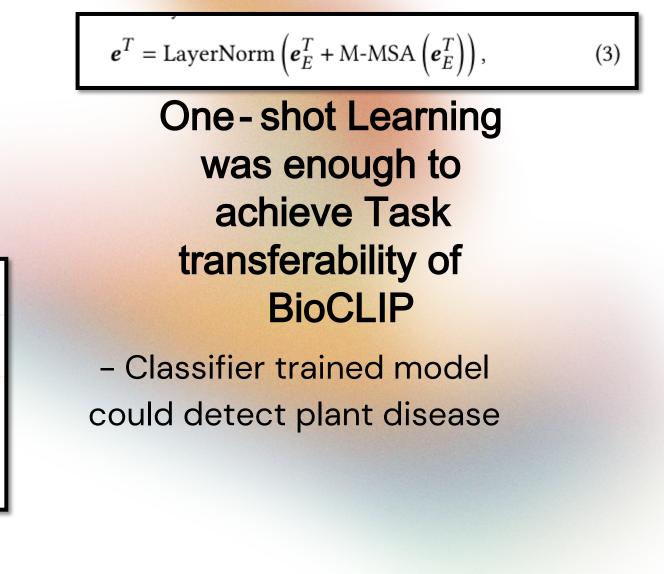
## **Take Aways**

### **BioCLIP** can achieve superior zero - shot generalization

### Mix - Type training strategy can enhance classification task



Source: BIOCLIP: A Vision Foundation Model for the Tree of Life.



LIMITATIONS

# Agenda

- UrbanCLIP: Learning Text–Enhanced Urban Region Profiling with Contrastive Language-Image Pretraining from the Web
- BIOCLIP: A Vision Foundation Model for the Tree of Life
- MMMU: A Massive Multi-discipline Multimodal Understanding and **Reasoning Benchmark for Expert AGI**



# Artificial General Intelligence (AGI)



Source: MMMU: A Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark for Expert AGI

- [1] Operationalizing progress on the path to agi. Arxiv [2023]
- [2] Measuring massive multitask language understanding. ICLR [2020]
- [3] Agieval: A human-centric benchmark for evaluating foundation models. NAACL [2023]
- [4] Learn to explain: Multimodal reasoning via thought chains for science question answering. ANIPS [2022]

How to create benchmarks for measuring Expert AGI?

## College Level Exams → MMLU [2], AGIEval [3] ;only text-based

 Existing Multimodal Benchmarks (ScienceQA [4]) focus on commonsense/daily knowledge, not expert-level knowledge- reasoning

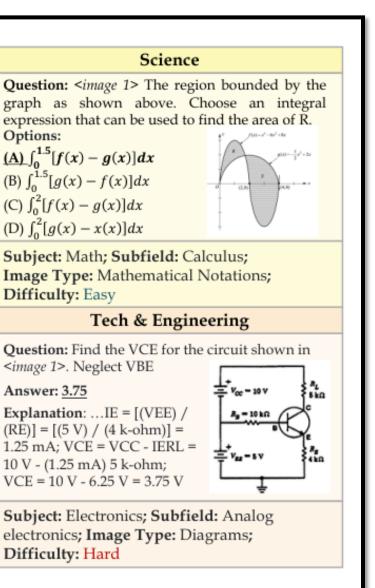
## and Reasoning Benchmark for Expert AGI

- Designed For: College Level (multi-discipline) (multimodal understanding) and (reasoning)
- Problem Source: Exams, Quizzes, Text books
  - 6 Common discipline: <u>Art & Design</u>, <u>Business</u>, <u>Science</u>, <u>Health & Medicine</u>, <u>Humanities</u> <u>& Social Science</u>, and <u>Tech & Engineering</u>.
- Covers:
  - 11.5K multimodal questions  $\leftarrow$  30 diverse subjects 183 subfields. ullet
  - Expert level reasoning : applying "Fourier Transform" or "Equi-•
  - librium Theory" to derive the solution ullet

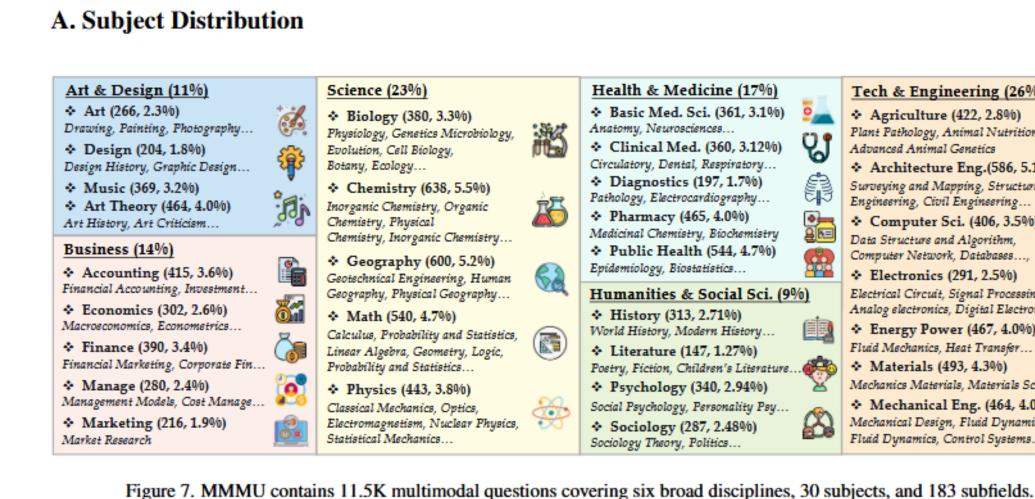
## and Reasoning Benchmark for Expert AGI

| Art & Design                                                                                                                                                                                                                                                                                                                               | Business                                                                                                                                                                                                                                          |                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Question: Among the following harmonic intervals, which one is constructed incorrectly?   Options:   (A) Major third <image 1=""/> (B) Diminished fifth <image 2=""/> (C) Minor seventh <image 3=""/> (D) Diminished sixth <image 4=""/>                                                                                                   | Question: The graph shown is compiled from data<br>collected by Gallup <image 1=""/> . Find the probability<br>that the selected Emotional Health Index Score is<br>between 80.5 and 82?Options:<br>(A) 0(B) 0.21422<br>(C) 0.3571Control (B) 0.5 | 8<br>9<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| Subject: Music; Subfield: Music;<br>Image Type: Sheet Music;<br>Difficulty: Medium                                                                                                                                                                                                                                                         | Subject: Marketing; Subfield: Market<br>Research; Image Type: Plots and Charts;<br>Difficulty: Medium                                                                                                                                             | S<br>I<br>I                                                                                      |
| Health & Medicine                                                                                                                                                                                                                                                                                                                          | Humanities & Social Science                                                                                                                                                                                                                       |                                                                                                  |
| Question: You are shown subtraction <i><image 1=""/></i> ,<br>T2 weighted <i><image 2=""/></i> and T1 weighted axial<br><i><image 3=""/></i> from a screening breast MRI. What is the<br>etiology of the finding in the left breast?<br>Options:<br>(A) Susceptibility artifact<br>(B) Hematoma<br>(C) Fat necrosis (D) Silicone granuloma | Question: In the political cartoon, the United States is seen as fulfilling which of the following roles? < <i>image</i> 1> Option:<br>(A) Oppressor<br>(B) Imperialist<br>(C) Savior (D) Isolationist                                            | C<br>A<br>E<br>(1<br>1<br>V                                                                      |
| Subject: Clinical Medicine; Subfield: Clinical<br>Radiology; Image Type: Body Scans: MRI, CT.;<br>Difficulty: Hard                                                                                                                                                                                                                         | Subject: History; Subfield: Modern<br>History; Image Type: Comics and Cartoons;<br>Difficulty: Easy                                                                                                                                               | S<br>e<br>L                                                                                      |

Figure 2. Sampled MMMU examples from each discipline. The questions and images need expert-level knowledge to understand and reason.



## and Reasoning Benchmark for Expert AGI



Source: MMMU: A Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark for Expert AGI

### Tech & Engineering (26%)

Agriculture (422, 2.8%) Plant Pathology, Animal Nutrition, Advanced Animal Genetics



Architecture Eng. (586, 5.1%) Surveying and Mapping, Structural Engineering, Civil Engineering ....

Computer Sci. (406, 3.5%) Data Structure and Algorithm, Computer Network, Databases...,

Electronics (291, 2.5%) Electrical Circuit, Signal Processing, Analog electronics, Digital Electronics

Energy Power (467, 4.0%) Fluid Mechanics, Heat Transfer...

Materials (493, 4.3%) Mechanics Materials, Materials Sci...

\* Mechanical Eng. (464, 4.0%) Mechanical Design, Fluid Dynamics, Fluid Dynamics, Control Systems...



1

0)

## and Reasoning Benchmark for Expert AGI

| Statistics                           | Number                        |
|--------------------------------------|-------------------------------|
| Total Questions                      | 11550                         |
| Total Disciplines/Subjects/Subfields | 6/30/183                      |
| Image Types                          | 30                            |
| Dev:Validation:Test                  | 150:900:10500                 |
| Difficulties (Easy: Medium: Hard)    | 28%:45%:27%                   |
| Multiple-choice Questions            | 10861 ( <mark>94.03%</mark> ) |
| Open Questions                       | 689 (5.97%)                   |
| Questions with an Explanation        | 2035 (17.62%)                 |
| Image in the Question                | 11264 ( <mark>97.52%</mark> ) |
| * Images at the beginning            | 2006 (17.81%)                 |
| * Images in the middle               | 4159 (36.92%)                 |
| * Images at the end                  | 5679 (50.42%)                 |
| Image in Options                     | 389 (3.37%)                   |
| Example with Multiple Images         | 854 <mark>(7.39%)</mark>      |
| Average question length              | 59.33                         |
| Average option length                | 9.17                          |
| Average explanation length           | 107.92                        |

- 50 university students and co-authors:
  - custom creation
- Mitigation strategy for potential data contamination:
  - Avoid readily available answers
  - regulations.
- consistency.
- Quality Control:
  - Duplicate Detection
  - Format and Typo Checking
  - Difficulty Categorization

### **Curation + Quality Control**

- Subjects like law and linguistics were excluded due
  - to the lack of multimodal content.
  - sourced from: textbooks, online resources, and,
    - Compliance with copyright and licensing
- Followed a standardized protocol to maintain

## and Reasoning Benchmark for Expert AGI : EVALUATION

Baselines

- Large Mulitmodal Models (LMMs)
- Text-only LLMs
- Human Experts
  - 90 College Senior Students
  - 30 Subjects, 900 validation questions (3 student/subject)
  - Allowed to consult books but NO INTERNET
- Metrics: micro-averaged accuracy; rule-based evaluation pipeline

|                                     | Validation<br>Overall<br>(900) | Test<br>Overall<br>(10,500) | Art &<br>Design<br>(1,163) | Business<br>(1,428) | Science<br>(2,426) | Health &<br>Medicine<br>(1,752) | Human. &<br>Social Sci.<br>(947) | Tech &<br>Eng.<br>(2,784) |
|-------------------------------------|--------------------------------|-----------------------------|----------------------------|---------------------|--------------------|---------------------------------|----------------------------------|---------------------------|
| Random Choice                       | 22.1                           | 23.9                        | 24.1                       | 24.9                | 21.6               | 25.3                            | 22.8                             | 24.8                      |
| Frequent Choice                     | 26.8                           | 25.8                        | 26.7                       | 28.4                | 24.0               | 24.4                            | 25.2                             | 26.5                      |
| Expert (Worst)                      | 76.2                           | -                           | -                          | -                   | -                  | -                               | -                                | -                         |
| Expert (Medium)                     | 82.6                           |                             | -                          | -                   | -                  | -                               | -                                | -                         |
| Expert (Best)                       | 88.6                           | •                           | -                          | -                   | -                  | -                               | -                                | -                         |
| Large                               | Multimodal N                   | Models (LM                  | Ms): Text                  | + Image as          | Input              |                                 |                                  |                           |
| OpenFlamingo2-9B [4]                | 28.7                           | 26.3                        | 31.7                       | 23.5                | 26.3               | 26.3                            | 27.9                             | 25.1                      |
| Kosmos2 [63]                        | 24.4                           | 26.6                        | 28.8                       | 23.7                | 26.6               | 27.2                            | 26.3                             | 26.8                      |
| Adept Fuyu-8B [6]                   | 27.9                           | 27.4                        | 29.9                       | 27.0                | 25.6               | 27.0                            | 32.5                             | 26.4                      |
| MiniGPT4-Vicuna-13B [94]            | 26.8                           | 27.6                        | 30.2                       | 27.0                | 26.2               | 26.9                            | 30.9                             | 27.2                      |
| LLaMA-Adapter2-7B [88]              | 29.8                           | 27.7                        | 35.2                       | 25.4                | 25.6               | 30.0                            | 29.1                             | 25.7                      |
| CogVLM [77]                         | 32.1                           | 30.1                        | 38.0                       | 25.6                | 25.1               | 31.2                            | 41.5                             | 28.9                      |
| Qwen-VL-7B-Chat [5]                 | 35.9                           | 32.9                        | 47.7                       | 29.8                | 25.6               | 33.6                            | 45.3                             | 30.2                      |
| InstructBLIP-T5-XXL [16]            | 35.7                           | 33.8                        | 48.5                       | 30.6                | 27.6               | 33.6                            | 49.8                             | 29.4                      |
| BLIP-2 FLAN-T5-XXL [35]             | 35.4                           | 34.0                        | 49.2                       | 28.6                | 27.3               | 33.7                            | 51.5                             | 30.4                      |
| InternLM-XComposer2-VL* [17]        | 43.0                           | 38.2                        | 56.8                       | 32.8                | 30.1               | 39.8                            | 60.7                             | 31.8                      |
| Yi-VL-34B* [84]                     | 45.9                           | 41.6                        | 56.1                       | 33.3                | 32.9               | 45.9                            | 66.5                             | 36.0                      |
| LLaVA-1.6-34B* [46]                 | 51.1                           | 44.7                        | 58.6                       | 39.9                | 36.0               | 51.2                            | 70.2                             | 36.3                      |
| InternVL-Chat-V1.2* [11]            | 51.6                           | 46.2                        | 62.5                       | 37.6                | 37.9               | 49.7                            | 70.1                             | 40.8                      |
| VILA1.5* [39]                       | 51.9                           | 46.9                        | <u>62.1</u>                | 40.6                | <u>37.7</u>        | 51.7                            | 74.0                             | <u>39.5</u>               |
| Qwen-VL-MAX* [65]                   | 51.4                           | 46.8                        | 64.2                       | 39.8                | 36.3               | 52.5                            | 70.4                             | 40.7                      |
| SenseChat-Vision-0423-Preview* [68] | 54.6                           | 50.3                        | 62.7                       | 44.1                | 42.3               | 55.7                            | 74.7                             | 43.5                      |
| GPT-4V(ision) (Playground) [60]     | 56.8                           | 55.7                        | 65.3                       | 64.3                | 48.4               | 63.5                            | 76.3                             | 41.7                      |
| Claude 3 Opus* [72]                 | 59.4                           | -                           | -                          | -                   | -                  | -                               | -                                | -                         |
| Gemini 1.5 Pro* [23]                | 62.2                           | -                           | -                          | -                   | -                  | -                               | -                                | -                         |
| GPT-4o* [61]                        | 69.1                           | -                           | -                          | -                   | -                  | -                               | -                                | -                         |
| Lar                                 | ge Language                    | Models (LI                  | Ms): Onl                   | y Text as Inj       | put                |                                 |                                  |                           |
| Llama2 7B [75]                      | 30.1                           | 28.7                        | 30.7                       | 27.2                | 26.7               | 27.7                            | 32.6                             | 29.8                      |
| FLAN-T5-XXL [14]                    | 32.1                           | 31.2                        | 36.8                       | 28.9                | 26.7               | 32.8                            | 44.8                             | 28.3                      |
| + OCR                               | 34.7                           | 31.9                        | 36.2                       | 28.8                | 26.2               | 32.6                            | 50.5                             | 29.7                      |
| + LLaVA Caption                     | 34.8                           | 31.9                        | 38.4                       | 27.8                | 27.0               | 33.2                            | 49.9                             | 28.7                      |
| Vicuna-13B [12]                     | 33.3                           | 31.0                        | 35.1                       | 30.1                | 24.7               | 31.4                            | 44.8                             | 30.1                      |
| + OCR                               | 35.4                           | 31.9                        | 37.1                       | 28.6                | 26.5               | 32.0                            | 49.3                             | 30.0                      |
|                                     | 33.9                           | 32.7                        | 42.0                       | 26.8                | 26.2               | 33.4                            | 49.4                             | 31.4                      |
| + LLaVA Caption                     |                                |                             |                            |                     |                    |                                 |                                  |                           |

Table 2. Selected results of different models on the MMMU validation and test set. Besides reporting the performance of LMMs, we additionally add text-only LLM baselines. The best-performing model in each category is in-bold, and the second best is underlined. \*: results provided by the authors. Due to the page limit, we show other models' results in Appendix Table 4. The live-updating leaderboard is available at: https://mmmu-benchmark.github.io/#leaderboard

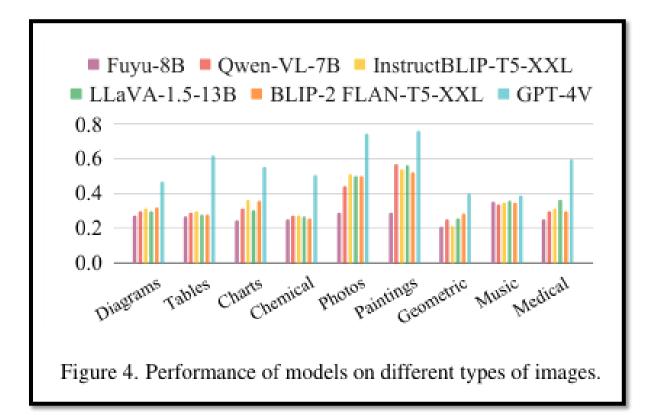
### InternVL-Chat-VILA1.5\* [39]

Gemini Nano2 Marco-VL\* Reka Edge\* [6 Qwen-VL-PLU Marco-VL-Plus Gemini 1.0 Pro Adept Fuyu-He Claude 3 Haiku Reka Flash\* [6 Skywork-VL\* Qwen-VL-MA HPT Pro\* [28] Claude 3 Sonne SenseChat-Visi Gemini 1.5 Fla Reka Core\* [6 GPT-4V(ision) Claude 3 Opus Gemini 1.0 Ult Gemini 1.5 Pro GPT-40\* [61]

Llama2 7B [75 FLAN-T5-XXI + OCR + LLaVA Ca Vicuna-13B [1 + OCR + LLaVA Ca GPT-4 Text [59

Source: MMMU: A Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark for Expert AGI

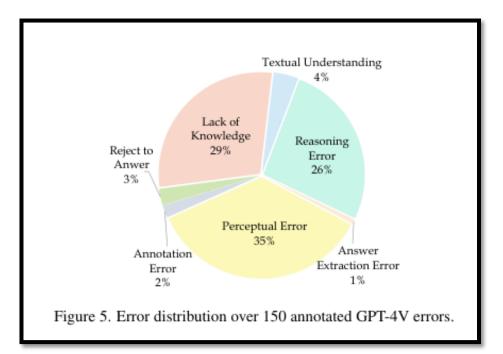
|                          | <b>51</b> ( | 46.0         | (A. 5       | 27.6         | 25.0 | 10.5 | 20.1 | 10.0        |
|--------------------------|-------------|--------------|-------------|--------------|------|------|------|-------------|
| at-V1.2* [11]            | 51.6        | 46.2         | 62.5        | 37.6         | 37.9 | 49.7 | 70.1 | 40.8        |
| 9]                       | 51.9        | 46.9         | <u>62.1</u> | 40.6         | 37.7 | 51.7 | 74.0 | <u>39.5</u> |
| 2* [22]                  | 32.6        | -            | -           | -            | -    | -    | -    | -           |
|                          | 41.2        | 40.4         | 56.5        | 31.0         | 31.0 | 46.9 | 66.5 | 33.8        |
| [62]                     | 42.8        | -            | -           | -            | -    | -    | -    | -           |
| .US* [64]                | 45.2        | 40.8         | 59.9        | 34.5         | 32.8 | 43.7 | 65.5 | 32.9        |
| us*                      | 46.2        | 44.3         | 57.4        | 34.7         | 38.5 | 48.7 | 72.2 | 36.7        |
| ro* [22]                 | 47.9        | -            | -           | -            | -    | -    | -    | -           |
| Heavy* [19]              | 48.3        | -            | -           | -            | -    | -    | -    | -           |
| ku* [72]                 | 50.2        | -            | -           | -            | -    | -    | -    | -           |
| [62]                     | 53.3        | -            | -           | -            | -    | -    | -    | -           |
| * [31]                   | 51.4        | 46.2         | 61.4        | 39.6         | 36.6 | 50.8 | 71.6 | 40.2        |
| AX* [65]                 | 51.4        | 46.8         | 64.2        | 39.8         | 36.3 | 52.5 | 70.4 | 40.7        |
| 8]                       | 52.0        | -            | -           | -            | -    | -    | -    | -           |
| net* [72]                | 53.1        | -            | -           | -            | -    | -    | -    | -           |
| ision-0423-Preview* [68] | 54.6        | 50.3         | 62.7        | 44.1         | 42.3 | 55.7 | 74.7 | 43.5        |
| lash* [23]               | 56.1        | -            | -           | -            | -    | -    | -    | -           |
| 62]                      | 56.3        | -            | -           | -            | -    | -    | -    | -           |
| n) (Playground) [60]     | 56.8        | 55.7         | 65.3        | 64.3         | 48.4 | 63.5 | 76.3 | 41.7        |
| ıs* [72]                 | 59.4        | -            | -           | -            | -    | -    | -    | -           |
| ltra* [22]               | 59.4        | -            | -           | -            | -    | -    | -    | -           |
| ro* [23]                 | 62.2        | -            | -           | -            | -    | -    | -    | -           |
|                          | 69.1        | -            | -           | -            | -    | -    | -    | -           |
| Larş                     | ge Languag  | e Models (Ll | LMs): Only  | y Text as In | put  |      |      |             |
| 75]                      | 30.1        | 28.7         | 30.7        | 27.2         | 26.7 | 27.7 | 32.6 | 29.8        |
| XL [14]                  | 32.1        | 31.2         | 36.8        | 28.9         | 26.7 | 32.8 | 44.8 | 28.3        |
|                          | 34.7        | 31.9         | 36.2        | 28.8         | 26.2 | 32.6 | 50.5 | 29.7        |
| Caption                  | 34.8        | 31.9         | 38.4        | 27.8         | 27.0 | 33.2 | 49.9 | 28.7        |
| [12]                     | 33.3        | 31.0         | 35.1        | 30.1         | 24.7 | 31.4 | 44.8 | 30.1        |
|                          | 35.4        | 31.9         | 37.1        | 28.6         | 26.5 | 32.0 | 49.3 | 30.0        |
| Caption                  | 33.9        | 32.7         | 42.0        | 26.8         | 26.2 | 33.4 | 49.4 | 31.4        |
| 59]                      | 34.9        | 33.8         | 32.9        | 28.5         | 30.6 | 41.3 | 53.0 | 28.4        |



| Models                   | Easy<br>(2946) | Medium<br>(4917) | Hard<br>(2637) | Overall<br>(10500) |
|--------------------------|----------------|------------------|----------------|--------------------|
| Fuyu-8B [6]              | 28.9           | 27.0             | 26.4           | 27.4               |
| Qwen-VL-7B [5]           | 39.4           | 31.9             | 27.6           | 32.9               |
| LLaVA-1.5-13B [44]       | 41.3           | 32.7             | 26.7           | 33.6               |
| InstructBLIP-T5-XXL [16] | 40.3           | 32.3             | 29.4           | 33.8               |
| BLIP-2 FLAN-T5-XXL [35]  | 41.0           | 32.7             | 28.5           | 34.0               |
| GPT-4V [60]              | 76.1           | 55.6             | 31.2           | 55.7               |

Table 3. Result decomposition across question difficulty levels.

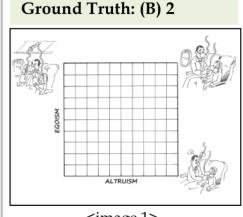
Apart from human-expert, GPT-4V is comparably performing best among the tested models



### ×

### **Perceptual Error**

**Question:** Look at the situation in the <image 1>. You are traveling on a plane with a small child. The cabin is depressurized and the oxygen mask falls from the ceiling. Which of these pictures shows the reconciliation of egoism and other-isms (the order is from left to right, top to bottom)? **Option:** (A) 1 (B) 2 (C) 3



<image 1>

**GPT-4V:** The image shows three situations on a plane when the oxygen mask falls: The adult puts on the mask first while the child watches (egoism). The adult puts the mask on the child first while struggling for breath. Both the adult and the child share the mask. The reconciliation of egoism and other-isms would be a situation where both the individual's needs and the needs of others are considered and addressed. Therefore, the correct answer is: (C) 3

**Error Reason:** GPT-4V recalled the right knowledge and made the right reasoning, but it failed to correctly map the IDs to the corresponding illustrations in the figure, which is not explicitly marked in the figure but is only described in text (the order is from left to right, top to bottom).



ullet

- Examine 150 randomly sampled error instances from GPT-4V's predictions.
  - Perceptual Error:
  - **Basic:** fails in elementary visual interpretation
    - **Domain Specific:** error due to lack of knowledge



### **History: Modern History**

Question: In the political cartoon, the United States is seen as fulfilling which of the following roles?<image 1>

Option:

- (A) Oppressor
- (B) Imperialist
- (C) Savior
- (D) Isolationist



<image 1>

GPT-4V: Based on the political cartoon, the United States is seen as fulfilling the role of: (B) Imperialist.

### Error Category: Perceptual Error

Error Reason: GPT-4V wrongly interprets the image, because it doesn't correctly interpret the contradiction between the comics on the top half and the bottom half. The perspective of the cartoonist is that the United States has been a savior to the nations brought under its control, saving them from poverty or oppression and bringing them trade, prosperity, and democratic governments. This mistake also indicates that GPT-4V holds some wrong political beliefs.

### Ground Truth: (C) Savior

Explanation: The perspective of the cartoonist is that the United States has been a savior to the nations brought under its control, saving them from poverty or oppression and bringing them trade, prosperity, and democratic governments. Although one might be tempted to cast the United States in the role of imperialist (B), the purpose of the cartoon is to highlight the positive transformation of the people due to their "rescue" by the United States, rather than the benefits to the United States. Because the cartoon claims the people are better off for having been "rescued" by the United States, the United States is not seen as an oppressor (A). Since isolationists do not support foreign intervention, (D) cannot be the correct answer.

Figure 67. A sample error case of History (subfield: Modern History). Error category: Perceptual Error Back to List of Figures | Back to Table Index



### Source: MMMU: A Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark for Expert AGI



### • Perceptual Error Example

## **Take Aways**

Comprehensive Multimodal Benchmark

### **Challenges for Current AI Models**

highlights the significant gap between AI and human expert performance

- beyond academic assessments.
- Biases in Data Curation: 50 college students and co-authors may induce bias in question selection, difficulty categorization, and representation of domain knowledge

### **Diverse Image and Question Types**

highly heterogeneous image types, including diagrams, tables, medical images, and sheet music.

### LIMITATIONS

Benchmark Does Not Fully Define Expert AGI : Failed to show expert performance