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DNA Vocabulary

G (Guanine)
T (Thymine) (In RNA, replaced by U (Uracil))

A (Adenine)

C (Cytosine

• DNA Pairs: A-T, C-G 
• RNA Pairs: A-U, C-G
• Gene Sequences: ATG CCG TAA



DNA Tokens

G (Guanine)
T (Thymine) (In RNA, replaced by U (Uracil))

A (Adenine)

C (Cytosine

Instead of using single letters: 
k-mers (short subsequences of length k).
• k=3 (3-mer): "ATGCGT" → [ATG, TGC, GCG, CGT]
• k=6 (6-mer): "ATGCGTAC" → [ATGCGT, GCGTAC]

Token Embeddings
• MASK tokens: masked during pre-training
• CLS tokens: meaning of entire sentence [whole sequence]
• SEP tokens: sentence operator/ end of sequence
• UNK tokens: Unknown 
• PAD Tokens: Padding for short setences
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DNABERT
01.

Pre-trained Bidirectional Encoder 
Representations from Transformers Model for 
DNA-Language in Genome



Introduction

• Deciphering Non-Coding DNA
for hidden instructions is 
challenging.  

• Traditional models fail to capture 
long-range dependencies and 
polysemous relationships within 
DNA sequences.

Problem Statement

Non-Coding DNA

GENE GENE

Gene Regulatory code

Genetic codeprotein



global and transferable contextual information from DNA sequences

cross-organism applicability

fine-tuning on task-specific datasets

visualization mechanisms for interpretation of sequence motifs

Capture

Demonstrate

Provide

traditional deep learning models in various genomic tasks Outperform

Objectives

Facilitate



DNABERT Model
• BERT-based (same architecture)
• Attention based transformer
• Adopts pre-training +fine-tuning

Maybe 
sinusoidal

Transformer 
blocks

cLs masked



Methodoly 

• k-mer representation instead of 
single nucleotides.

• Different values of k (3, 4, 5, 6) 
• Added special tokens like [CLS], 

[PAD], [UNK], [SEP], and [MASK]

• masked language modeling 
(MLM) for random masking [15%] 

• Human genome (5-510 base 
pairs)

• 12 Transformer layers, 768 
hidden units, and 12 attention 
heads

• Task-specific datasets
• Long sequences exceeding 512 

tokens are split and processed as 
DNABERT-XL.

• Best = DNABERT-6
• Skip masking

1 2 3
Tokenization Pre-training Fine-tuning 



Results

Accurately recognizes 
canonical and non-

canonical splice sites

Accurately identifies 
transcription factor 

binding sites

Allows visualization of 
important regions, 
contexts and sequence 
motifs

Effectively predicts 
proximal and
core promoter 
regions

DNABERT-Splice

DNABERT-TF

DNABERT-viz

DNABERT-Prom

• Generalize over tasks
• Identifying functional genetic variants

DNABERT



Applications 

DNABERT-Prom

DNABERT-TF

DNA sequence that 
initiates the 
transcription of a gene

DNABERT-Splice
functional genetic variants



Splice 

Results: (left to right) accuracy, F 1 and MCC 

Prom 



TF

Results: (left to right) accuracy, F1 and MCC 

General
(mouse 

encode ) 



Future Work

Determining CREs and 
enhancer regions from 
ATAC-seq and DAP-seq

3. Direct machine 
translation on DNA

1. Other sequence 
prediction tasks

2. Prediction of 
binding preferences 
of RNA-binding 
proteins (RBPs)



5' UTR
02.

A Language Model for Decoding Untranslated 
Regions of mRNA and Function Predictions



Background

5′ untranslated region (UTR)



Introduction

Problem 
Statement

Objectives

No unified foundation 
model to study function of 

5’UTR

Use Language model to 
Extract meaningful 

semantic representations 
from UTRs of raw mRNA 
sequences and map them 

to predict functions of 
interest.



5’UTR-LM Model Overview

(Minimum Free Energy)

Secondary Structure



Results

UTR-LM predicts the 
ribosome loading

UTR-LM predicts mRNA 
TE and expression

URR-LM identifies IRESs

New designs validated in 
wet -lab experiments



UTR-LM 
predicts 
mRNA TE and 
EL



URR-LM 
identifies IRESs



Conclusion

• Computationally 
expensive

• Outperforms the best-
known baseline in each 

task.
• Performance not limited 

by sequence length

sparse transformers for 
modelling longer RNA 
sequences and more 
complex biological 

functions

limitationsConclusion Future



scGPT
03.

Towards Building a Foundation Model for Single-
Cell Multi-omics using Generative AI



Single -cell RNA sequencing ( scRNA-seq)

cellular heterogeneity 
exploration

lineage tracking

pathogenic mechanism 
elucidation

personalized 
therapeutic strategies



Objectives

• Foundation model pretrained on large-scale data 
• comprehend the complex interactions between 

genes across diverse tissues.

Problem Statement

Current machine-learning-based 
methods in single-cell research 
are scattered

Introduction



scGPT Model Overview 



Results

Improves the precision 
of cell type annotation

Predicting Unseen 
Genetic Perturbation 
Responses

multi-batch and multi-omic
integration

Uncovers gene networks 
for specific cell states



Cell Type 
Annotation



Predicting Unseen Genetic 
Perturbation Responses
modifications in gene expression or 
function caused by:

Gene knockouts (KO) → Removing a gene entirely.
Gene knockdowns (KD) → Reducing a gene’s 

expression.
Overexpression (OE) → Increasing gene activity.



Multi -Batch & 
Multi -Omic
Integration



Conclusion

• pretrain on a larger-scale 
dataset with more diversity

• explore in-context 
instruction learning for 

single-cell data.

Future Work

• Pretraining does not 
mitigate batch effects. 

• zero-shot performance 
could be constrained 
on datasets with 
technical variation

• Evaluating the model is 
also complex due to 
variation in data quality

Limitations



Summary
Conclusion & Questions 



Model DNABERT (BERT based) UTR-LM scGPT

Domain DNA sequencing 5’UTR of mRNA (scRNA-seq)

motive Deciphering DNA sequences Unified foundation model to study 
function of 5’UTR

Unified foundation model to study 
single-cell RNA functions 

Method

• BERT architecture 
• Tokenization with k-mer (6)
• Modify pre-training process
• Fine-tuned on 3 specific tasks 
• Benchmark with current tools 

• Transformer-based architecture
• Masked nucleotide (MN) 

prediction
• secondary structure (SS) 
• minimum free energy (MFE)
• Fine-tuned on multiple 

downstream tasks

• Transformer-based architecture
• Pretrained on a large corpus of 

single-cell RNA data
• tokenization of gene expression 

profiles. 
• Multi-task learning approach

Results

• surpassing existing tools
• Enhanced performance with 

limited data
• No- separate training needed 
• Flexible learning of DNA in 

different situations 

• outperforms the best-known 
baseline in each task.

• Performance not limited by 
sequence length

• Validated through wet-laboratory 
experiments

• Zero shot generalization

• Pretrained model extrapolates to 
unseen datasets.

• Outperform existing models
• High accuracy in cell type annotation
• strong scaling properties

limits
• Sequence Length Limitation
• Dependence on k-mer

Tokenization
• Computationally expensive 

• Pretraining does not mitigate batch 
effects. 

• zero-shot performance could be 
constrained on datasets with 
technical variation



Questions
Paper Question

ALL
It appears that these three papers directly apply LLMs to gene sequence inputs. Are there any studies 
that explore incorporating a separate encoder for processing the gene sequence, enabling the model to 
handle multimodal inputs (text + gene data)?

DNABERT Do the authors mention why they stop at k=6 for the k-mer tokenization? Do you believe that larger k's 
could lead to better performance since each token might be able to capture richer context?



Any studies that explore incorporating a separate encoder for processing the gene 
sequence, enabling the model to handle multimodal inputs (text + gene data)?

● Multi-modal Transfer Learning Between Biological Foundation Models
○ Uses separate encoders for DNA, RNA, and proteins, each trained independently.
○ Aggregation layers fuse embeddings from different modalities.
○ Applied for predicting RNA transcript isoforms and cross-modality generalization.

● Prot2Text: Multimodal Protein Function Generation with GNNs & Transformers
○ GNN encoder for protein structural data + Transformer encoder for text-based annotations.
○ Output: rich functional descriptions of proteins.
○ Beyond simple classification, enhancing explainability in protein research.

● Geneverse: Open-Source Multimodal LLMs for Genomics & Proteomics
○ Integrates genomic, proteomic, and textual data using specialized encoders.
○ Fine-tuned LLMs generate gene function descriptions & protein function predictions.
○ Supports tasks like spatial transcriptomics & marker gene selection.



DNABERT stops at k=6 for the k-mer tokenization? Do you believe that larger k's could 
lead to better performance since each token might be able to capture richer context?

● Simple Answer: NO
●  � k (e.g., k=7) = � vocabulary to 16,385 tokens= � complexity & computational cost
●  � k = over-specialize the model = can't generalize [overfitting]
● DNABERT-3, 4, 5, and 6 achieved very similar performance, with k=6 slightly 

outperforming the others = not be significant enough to justify increase.



Thank you 
for listening

Any More Questions?
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