

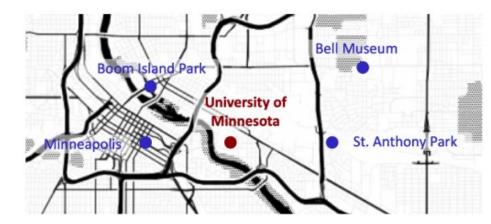
# Urban Language Models

Shaohuai Liu

#### Content

- SpaBERT
  - Encoder-only model, learn spatial representations of geo-entities for down stream tasks
- GeoLM
  - o Contrastive learning between natural language and SpaBERT
- UrbanGPT
  - Spatio-temporal model, prediction task only.

- Context helps understanding the central token
  - Linguistic context:
    - The scientist's explanation was so convoluted that even the students with the best grades struggled to understand it.
  - Surrounding geo-entities also help



- Problem setting
  - Generate a contextualized representation for each entity  $g_i$ 
    - Set of geo-entities  $S = \{g_1, \dots, g_l\}, g_i = (name, loc)$
    - Spatial context of entity  $g_p$ :  $SC(g_p) = \{g_{n_1}, \dots, g_{n_k}\}, dist(g_p, g_{n_i}) < T$
    - Didn't use graph encoder
  - Use pretrained entity representation in downstream tasks

• Linearizing neighboring geo-entity names as pseudo sentences

[CLS] University of Minnesota [SEP] Minneapolis [SEP] St. Anthony Park [SEP] Bloom Island Park [SEP] Bell Museum [SEP]

• Encoding spatial relations

Token Embed. [CLS]  $T_1^p$  $T_2^p$  $T_3^p$  $T_{1}^{n_{1}}$  $T_{2}^{n_{1}}$  $T_{1}^{n_{2}}$  $T_{2}^{n_{2}}$  $T_{3}^{n_{2}}$ [SEP] [SEP] [SEP] Sequence Pos. Embed. POS.  $POS_1$ POS<sub>2</sub>  $POS_3$ POS<sub>4</sub> POS<sub>5</sub> POS<sub>6</sub>  $POS_8$ POS<sub>9</sub> POS<sub>10</sub> POS<sub>11</sub>  $POS_7$ DSEP  $dist_{x,y}^{n_1}$   $dist_{x,y}^{n_1}$  DSEP  $dist_{x,y}^{n_2}$   $dist_{x,y}^{n_2}$   $dist_{x,y}^{n_2}$  DSEP Spatial-Coord Embed. DSEP 0 0 0

$$dist_x^{n_k} = (g_{n_k}^{locx} - g_p^{locx})/Z$$
$$dist_y^{n_k} = (g_{n_k}^{locy} - g_p^{locy})/Z$$

- Pretraining tasks
  - Masked Language Modeling (MLM)
    - Re-complete randomly masked partial entity names given spatial coordinates

[CLS] ### of Minnesota [SEP] Minneapolis
[SEP] St. ### Park [SEP] ### Island Park
### Bell Museum [SEP]

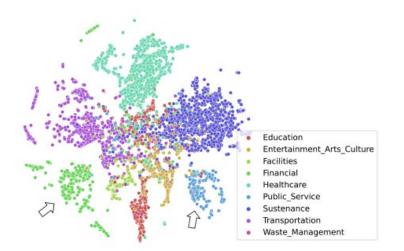
- Masked Entity Prediction (MEP)
  - Predict the full entity name given spatial coordinates and context.

[CLS] University of Minnesota [SEP] Minneapolis [SEP] ### ### [SEP] Bloom Island Park [SEP] Bell Museum [SEP]

- o Pretraining Data
  - OpenStreetMap(OSM), randomly select entities as pivots and construct pseudo sentences

- Downstream tasks
  - Geo-entity classification
  - Geo-entity link prediction
- Experiments:
  - Entity Classification

| $Classes \rightarrow$       | Edu.        | Ent. | Fac. | Fin. | Hea.        | Pub. | Sus.        | Tra.        | Was. | Micro Avg |
|-----------------------------|-------------|------|------|------|-------------|------|-------------|-------------|------|-----------|
| <b>BERT</b> <sub>Base</sub> | <u>.674</u> | .634 | .763 | .929 | .856        | .872 | .856        | .862        | .678 | .835      |
| RoBERTa <sub>Base</sub>     | .626        | .627 | .605 | .951 | <u>.869</u> | .818 | .838        | .850        | .475 | .820      |
| $SpanBERT_{Base}$           | .633        | .589 | .608 | .916 | .859        | .882 | .824        | <u>.867</u> | .735 | .819      |
| $LUKE_{Base}$               | .648        | .608 | .598 | .945 | .857        | .867 | .854        | .851        | .517 | .825      |
| SimCSE <sub>BERT-Base</sub> | .623        | .590 | .504 | .925 | .867        | .852 | <u>.857</u> | .810        | .470 | .810      |
| $SimCSE_{RoBERTa-Base}$     | .621        | .629 | .499 | .951 | .841        | .853 | .828        | .856        | .500 | .814      |
| $SPABERT_{Base}$            | .674        | .653 | .680 | .959 | .865        | .900 | .883        | .888        | .703 | .852      |
| $\text{BERT}_{Large}$       | .707        | .661 | .647 | .937 | .874        | .850 | .873        | .864        | .526 | .841      |
| RoBERTa <sub>Large</sub>    | .657        | .626 | .682 | .907 | .855        | .805 | .831        | .859        | .587 | .817      |
| SpanBERT <sub>Large</sub>   | .683        | .652 | .661 | .931 | .868        | .853 | .851        | .848        | .624 | .829      |
| $LUKE_{Large}$              | .665        | .607 | .660 | .899 | .855        | .809 | .813        | .844        | .587 | .808      |
| $SimCSE_{BERT-Large}$       | .693        | .661 | .713 | .940 | .880        | .871 | .864        | .867        | .564 | .844      |
| $SimCSE_{RoBERTa-Large}$    | .683        | .630 | .648 | .916 | .865        | .802 | .807        | .848        | .587 | .811      |
| SpaBERT <sub>Large</sub>    | .731        | .690 | .710 | .956 | .901        | .892 | .893        | .903        | .677 | .871      |



| Classes                    | California | London |
|----------------------------|------------|--------|
| Education                  | 6,222      | 618    |
| Entertainment_Arts_Culture | 1,380      | 601    |
| Facilities                 | 574        | 179    |
| Financial                  | 2,590      | 769    |
| Healthcare                 | 3,779      | 1,779  |
| Public_Service             | 2,658      | 393    |
| Sustenance                 | 4,276      | 1,693  |
| Transportation             | 4,226      | 1,618  |
| Waste_Management           | 167        | 76     |
| Total                      | 25,872     | 7,726  |

- Experiment
  - Unsupervised Link Prediction
    - A set of entities from Wikidata, and the another larger set from USGS.
    - Do mapping from Wikidata to USGS using cosine similarity.

| Model                           | MRR  | R@1         | R@5         | R@10 |
|---------------------------------|------|-------------|-------------|------|
| BERT <sub>Base</sub>            | .400 | .289        | .559        | .635 |
| RoBERTa <sub>Base</sub>         | .326 | .232        | .446        | .540 |
| SpanBERT <sub>Base</sub>        | .164 | .138        | .201        | .213 |
| $LUKE_{Base}$                   | .306 | .188        | .440        | .547 |
| SimCSE <sub>BERT-Base</sub>     | .453 | <u>.371</u> | .547        | .628 |
| SimCSE <sub>RoBERTa-Base</sub>  | .227 | .188        | .264        | .301 |
| $SPABERT_{Base}$                | .515 | .338        | .744        | .850 |
| BERT <sub>Large</sub>           | .337 | .245        | .459        | .509 |
| RoBERTa <sub>Large</sub>        | .379 | .220        | .603        | .704 |
| SpanBERT <sub>Large</sub>       | .229 | .176        | .308        | .339 |
| LUKE <sub>Large</sub>           | .402 | .232        | <u>.635</u> | .767 |
| SimCSE <sub>BERT-Large</sub>    | .475 | .402        | .559        | .616 |
| SimCSE <sub>RoBERTa-Large</sub> | .214 | .176        | .239        | .283 |
| SPABERT <sub>Large</sub>        | .537 | .383        | .744        | .864 |

Table 3: Geo-entity linking result. Bold and underlined numbers are the highest scores in each column and the highest scores among the baselines, respectively.

$$MRR = rac{1}{|Q|} \sum_{i=1}^{|Q|} rac{1}{rank_i} \, .$$

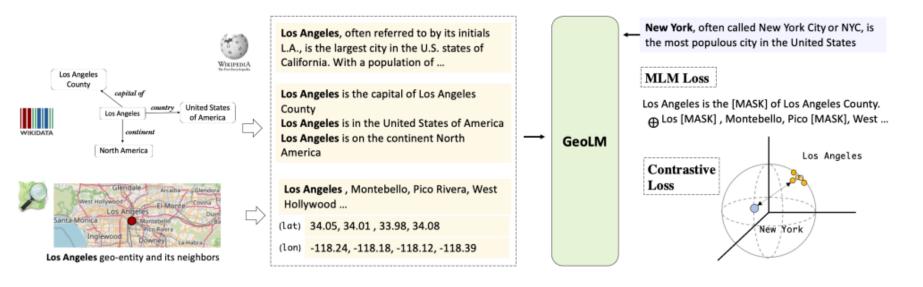
- Main Idea
  - It is unclear if LLM can be strengthened by aligning the pseudo sentences with linguistic descriptions.

Los Angeles, often referred to by its initials L.A., is the largest city in the U.S. states of California. With a population of ...

Los Angeles is the capital of Los Angeles County Los Angeles is in the United States of America Los Angeles is on the continent North America

|       | Angeles , Montebello, Pico Rivera, West<br>ywood |
|-------|--------------------------------------------------|
| (lat) | 34.05, 34.01 , 33.98, 34.08                      |
| (lon) | -118.24, -118.18, -118.12, -118.39               |

- How?
  - Construct geo-corpus from Wikidata.
  - Construct pseudo sentences from OSM following SpaBERT
  - Train LLM using MLM loss
  - Contrastive learning



- How?
  - Tokenize natural language and pseudo sentences in a single framework.

|             | NL Inpu          | ıt      |         |       |         |            |       |           |       |          |         |  |  |
|-------------|------------------|---------|---------|-------|---------|------------|-------|-----------|-------|----------|---------|--|--|
| Tokens      | [CLS]            | Los     | Angeles | is    | the     | commercial | ,     | financial | and   | cultural | [SEP]   |  |  |
| Position ID | 0                | 1       | 2       | 3     | 4       | 5          | 6     | 7         | 8     | 9        | 10      |  |  |
| Segment ID  | 0                | 0       | 0       | 0     | 0       | 0          | 0     | 0         | 0     | 0        | 0       |  |  |
| X-Coord     | DSEP             | DSEP    | DSEP    | DSEP  | DSEP    | DSEP       | DSEP  | DSEP      | DSEP  | DSEP     | DSEP    |  |  |
| Y-Coord     | DSEP             | DSEP    | DSEP    | DSEP  | DSEP    | DSEP       | DSEP  | DSEP      | DSEP  | DSEP     | DSEP    |  |  |
|             | Geospatial Input |         |         |       |         |            |       |           |       |          |         |  |  |
| Tokens      |                  | Los     | Angeles | [SEP] | Glen    | ##dale     | [SEP] | Pasadena  | [SEP] | Al       | ##ham   |  |  |
| Position ID |                  | 0       | 1       | 2     | 3       | 4          | 5     | 6         | 7     | 8        | 9       |  |  |
| Segment ID  |                  | 1       | 1       | 1     | 1       | 1          | 1     | 1         | 1     | 1        | 1       |  |  |
| X-Coord     |                  | 34.05   | 34.05   | DSEP  | 34.17   | 34.17      | DSEP  | 34.16     | DSEP  | 34.08    | 34.08   |  |  |
| Y-Coord     |                  | -118.24 | -118.24 | DSEP  | -118.25 | -118.25    | DSEP  | -118.13   | DSEP  | -118.13  | -118.13 |  |  |

- Pretraining corpus
  - Geographical: OpenStreetMap(OSM)
  - o Natural language: Wikidata
- Pretraining tasks
  - Contrastive learning

$$\mathcal{L}_{i}^{contrast} = -\log \frac{e^{\sin(\mathbf{h}_{i}^{nl}, \mathbf{h}_{i}^{geo})/\tau}}{\sum_{j=1}^{2N} \mathbb{1}_{[j\neq i]} e^{\sin(\mathbf{h}_{i}^{nl}, \mathbf{h}_{j}^{geo})/\tau}},$$

Masked Language Modeling(MLM)

- Experiments
  - Entity-name recognition
    - Predict B(begin of entity), I(Inside entity), 0(non-entity) for each token
  - o Entity linking
    - Identify the inputs of the same entity from different sources
  - Geo-entity classification

#### • Entity name recognition

| GeoWebNews  | Token(B-topo)    |              |       | Т            | oken (I-top | 0)           | micro-       | Entity |        |       |
|-------------|------------------|--------------|-------|--------------|-------------|--------------|--------------|--------|--------|-------|
| Geowebivews | eo weblyews Prec |              | F1    | Prec         | Recall      | F1           | F1           | Prec   | Recall | F1    |
| BERT        | 90.00            | 89.28        | 89.64 | 78.55        | 79.44       | 78.99        | 84.46        | 77.03  | 83.42  | 80.10 |
| SimCSE-BERT | 83.86            | 90.26        | 86.95 | 74.61        | 82.07       | 78.16        | 82.67        | 72.76  | 83.68  | 77.84 |
| SpanBERT    | 85.98            | 88.37        | 87.16 | 86.13        | 89.19       | 87.63        | 87.38        | 75.32  | 81.16  | 78.13 |
| SapBERT     | 83.12            | 88.32        | 85.64 | 76.26        | 81.11       | 78.61        | 82.22        | 72.48  | 80.16  | 76.12 |
| GEOLM       | 91.15            | <u>90.43</u> | 90.79 | <u>79.16</u> | 84.27       | <u>81.63</u> | <u>86.33</u> | 82.18  | 85.67  | 83.89 |

Table 1: Toponym recognition results on GeoWebNews dataset. **Bolded** and <u>underlined</u> numbers are for best and second best scores respectively.

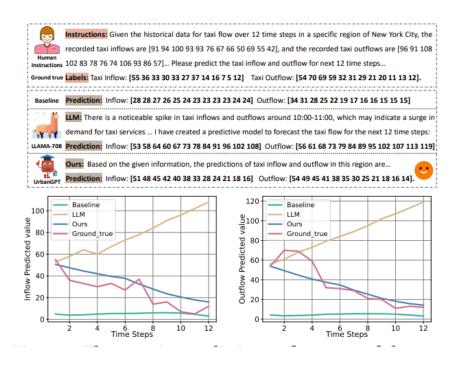
## • Entity Linking

| LGL             | R@1                       | R@5                       | R@10                       | P@D <sub>161</sub>         |
|-----------------|---------------------------|---------------------------|----------------------------|----------------------------|
| BERT            | <u>34.6</u>               | 67.5                      | 78.1                       | 41.2                       |
| RoBERTa         | 24.2                      | 48.7                      | 60.6                       | 27.9                       |
| SpanBERT        | 25.2                      | 48.8                      | 61.0                       | 28.8                       |
| SapBERT         | 30.8                      | 58.8                      | 72.2                       | 35.1                       |
| GEOLM           | 38.2                      | 65.3                      | 72.6                       | 44.1                       |
|                 |                           |                           |                            |                            |
| WikToR          | P@D <sub>20</sub>         | P@D <sub>50</sub>         | P@D <sub>100</sub>         | P@D <sub>161</sub>         |
| WikToR<br>BERT  | P@D <sub>20</sub><br>16.1 | P@D <sub>50</sub><br>16.3 | P@D <sub>100</sub><br>16.9 | P@D <sub>161</sub><br>17.6 |
|                 |                           |                           |                            |                            |
| BERT            | 16.1                      | 16.3                      | 16.9                       | 17.6                       |
| BERT<br>RoBERTa | 16.1<br>11.7              | 16.3<br>11.9              | 16.9<br>12.4               | 17.6<br>13.0               |

• Entity classification

| $Classes \rightarrow$ | Edu.        | Ent. | Fac.        | Fin. | Hea. | Pub. | Sus. | Tra. | Was. | Micro F1 |
|-----------------------|-------------|------|-------------|------|------|------|------|------|------|----------|
| BERT                  | <u>67.4</u> | 63.4 | 76.3        | 92.9 | 85.6 | 87.2 | 85.6 | 86.2 | 67.8 | 83.5     |
| SpanBERT              | 63.3        | 58.9 | 60.8        | 91.6 | 85.9 | 88.2 | 82.4 | 86.7 | 73.5 | 81.9     |
| SimCSE-BERT           | 62.3        | 59.0 | 50.4        | 92.5 | 86.7 | 85.2 | 85.7 | 81.0 | 47.0 | 81.0     |
| LUKE                  | 64.8        | 60.8 | 59.8        | 94.5 | 85.7 | 86.7 | 85.4 | 85.1 | 51.7 | 82.5     |
| SpaBERT               | 67.4        | 65.3 | 68.0        | 95.9 | 86.5 | 90.0 | 88.3 | 88.8 | 70.3 | 85.2     |
| GEOLM                 | 72.5        | 70.9 | <u>73.0</u> | 97.8 | 91.5 | 83.6 | 90.5 | 90.8 | 62.2 | 87.8     |

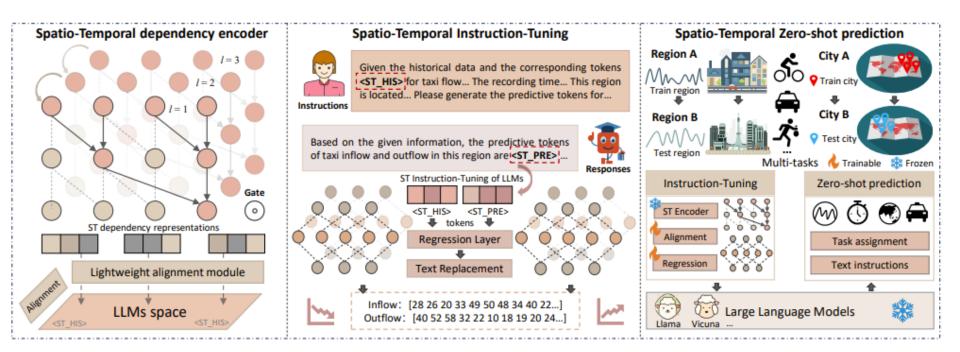
- Main Idea
  - The previous research focus only on spatial-level.
  - Directly applying LLM on sptio-temporal data = inferior zero-shot performance
  - It is necessary to take temporal dependencies into finetuning.



- Problem setting
  - Spatio-temporal data:  $X \in R^{A \times T \times F}$  (area, time, feature)
  - Spatio-temporal forecast:

$$\mathbf{X}_{t_{K+1}:t_{K+P}} = f(\mathbf{X}_{t_{K-H+1}:t_K})$$
(1)

• Overview



• Spatio-Temporal Dependency Encoder

$$\Psi_{r}^{(l)} = (\bar{\mathbf{W}}_{k}^{(l)} * \mathbf{E}_{r}^{(l)} + \bar{\mathbf{b}}_{k}^{(l)}) \cdot \delta(\bar{\mathbf{W}}_{g}^{(l)} * \mathbf{E}_{r}^{(l)} + \bar{\mathbf{b}}_{g}^{(l)}) + \mathbf{E}_{r}^{'(l)}$$
(3)

$$\mathbf{S}_{r}^{(l)} = (\mathbf{W}_{s}^{(l)} * \Psi_{r}^{(l)} + \mathbf{b}_{s}^{(l)}) + \mathbf{S}_{r}^{(l-1)}$$
(4)

Residual connection

• Model optimization

- Experiments
  - o Zero-shot

|       | Dataset |       | NYC   | -taxi |       |      | NYC   | -bike |       |          | NYC-   | crime    |        |
|-------|---------|-------|-------|-------|-------|------|-------|-------|-------|----------|--------|----------|--------|
| Model | Туре    | Inf   | low   | Out   | flow  | Inf  | low   | Out   | flow  | Burgla   | ary    | Robbe    | ery    |
|       | Metrics | MAE   | RMSE  | MAE   | RMSE  | MAE  | RMSE  | MAE   | RMSE  | Macro-F1 | Recall | Macro-F1 | Recall |
| AG    | GCRN    | 10.86 | 26.51 | 13.15 | 36.45 | 3.41 | 7.98  | 3.42  | 8.08  | 0.48     | 0.00   | 0.49     | 0.01   |
| AST   | IGCN    | 9.75  | 24.12 | 12.42 | 33.28 | 5.58 | 11.58 | 5.78  | 12.29 | 0.49     | 0.01   | 0.55     | 0.09   |
| G     | WN      | 10.73 | 26.50 | 9.67  | 26.74 | 3.32 | 8.17  | 3.07  | 7.52  | 0.48     | 0.00   | 0.52     | 0.04   |
| MT    | GNN     | 10.16 | 25.84 | 12.59 | 35.38 | 3.18 | 7.62  | 3.20  | 7.65  | 0.64     | 0.27   | 0.65     | 0.30   |
| ST    | TWA     | 11.28 | 28.97 | 13.54 | 38.61 | 4.59 | 10.94 | 4.35  | 10.67 | 0.48     | 0.00   | 0.51     | 0.03   |
| STS   | SGCN    | 18.97 | 41.38 | 20.07 | 45.79 | 6.85 | 14.98 | 6.54  | 14.77 | 0.48     | 0.00   | 0.48     | 0.00   |
| ST    | GCN     | 12.54 | 30.80 | 14.32 | 39.58 | 4.11 | 9.21  | 4.45  | 9.62  | 0.48     | 0.00   | 0.64     | 0.30   |
| TC    | GCN     | 10.04 | 25.10 | 10.98 | 30.03 | 2.88 | 6.55  | 2.91  | 6.42  | 0.56     | 0.10   | 0.58     | 0.13   |
| DMV   | STNET   | 11.00 | 28.29 | 10.59 | 29.20 | 3.80 | 9.87  | 3.65  | 9.21  | 0.48     | 0.01   | 0.59     | 0.15   |
| ST-I  | LSTM    | 16.97 | 34.43 | 18.93 | 44.10 | 7.78 | 15.41 | 6.92  | 17.12 | 0.48     | 0.00   | 0.49     | 0.03   |
| GP    | T4TS    | 9.72  | 24.51 | 10.85 | 31.00 | 3.16 | 7.45  | 3.23  | 7.53  | 0.48     | 0.00   | 0.49     | 0.02   |
| Urba  | anGPT   | 6.16  | 16.92 | 6.83  | 21.78 | 2.02 | 5.16  | 2.01  | 5.03  | 0.67     | 0.34   | 0.69     | 0.42   |

#### • Supervised Learning

|          |      | NYC   | -taxi |       |      | NYC   | -bike   |       |  |
|----------|------|-------|-------|-------|------|-------|---------|-------|--|
| Model    | Inf  | low   | Out   | flow  | Inf  | low   | Outflow |       |  |
|          | MAE  | RMSE  | MAE   | RMSE  | MAE  | RMSE  | MAE     | RMSE  |  |
| AGCRN    | 2.83 | 8.35  | 2.62  | 9.21  | 3.30 | 7.65  | 3.38    | 7.73  |  |
| ASTGCN   | 5.41 | 18.04 | 5.00  | 19.29 | 3.87 | 7.93  | 3.66    | 7.69  |  |
| GWN      | 3.91 | 11.93 | 2.89  | 10.85 | 4.30 | 9.04  | 3.88    | 8.29  |  |
| MTGNN    | 3.09 | 10.13 | 2.61  | 10.96 | 3.31 | 7.47  | 3.26    | 7.61  |  |
| STWA     | 3.90 | 12.64 | 3.15  | 11.32 | 4.23 | 9.07  | 4.18    | 9.18  |  |
| STSGCN   | 4.57 | 13.93 | 4.41  | 15.87 | 5.10 | 12.23 | 4.72    | 10.78 |  |
| STGCN    | 3.45 | 9.82  | 3.17  | 10.53 | 3.88 | 9.23  | 3.90    | 9.08  |  |
| TGCN     | 3.99 | 11.47 | 3.31  | 11.58 | 4.12 | 7.92  | 4.11    | 7.84  |  |
| DMVSTNET | 3.83 | 11.55 | 2.76  | 9.88  | 3.71 | 7.95  | 3.69    | 7.92  |  |
| ST-LSTM  | 7.78 | 15.41 | 6.92  | 17.12 | 5.00 | 11.52 | 4.96    | 11.41 |  |
| UrbanGPT | 2.50 | 6.78  | 1.71  | 6.68  | 3.11 | 7.10  | 3.01    | 6.94  |  |

#### Table 2: Evaluation of performance in the end-to-end supervised setting on the NYC-taxi and NYC-bike datasets.

## Rethinking

- How to appropriately represent data is the key question when applying LLM for specific domain.
- Typically, aligning domain-specific data with natural language description could enhance the model performance.
- If you have a self-designed encoder, finetuning encoder only is all you need.