

Mining Text-Attributed Graphs with LLMs

Outline

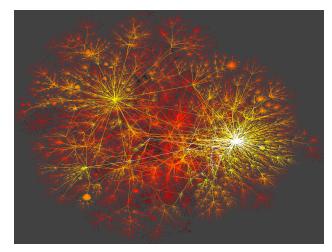
- **Motivation:** Why Mining Text-attributed Graphs?
- Content: Mining Text-attributed Graphs with Language Models

Representation learning with language models on text-attributed graphs 💛

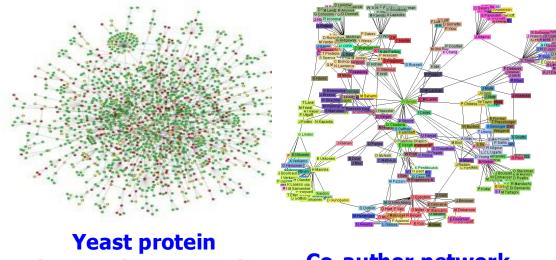
- Language model pretraining text-attributed graphs
- Large language model reasoning on text-attributed graphs

Ubiquitous Graphs

- Graphs and substructures: Chemical compounds, visual objects, circuits, XML
- Biological networks
- Bibliographic networks: DBLP, ArXiv, PubMed, ...
- Social networks: Facebook >100 million active users
- World Wide Web (WWW): > 3 billion nodes, > 50 billion arcs
- Cyber-physical networks



World-Wide Web

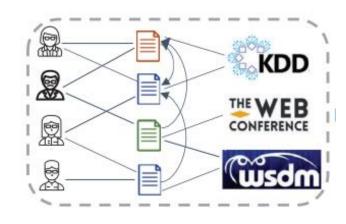


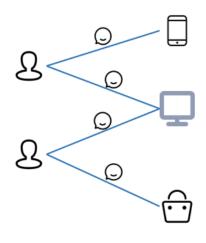
interaction network Co-author network

Social network sites

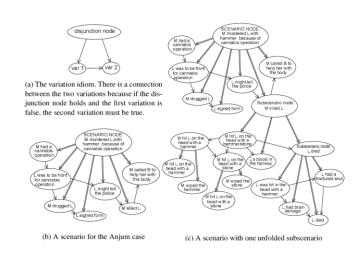
Text-attributed Graphs

- Text-attributed Graphs
 - ☐ A graph with some nodes or edges associated with **text**.
 - Also called text-rich graphs.
 - E.g., Academic Network, User-review-Item Network, Legal-case Network





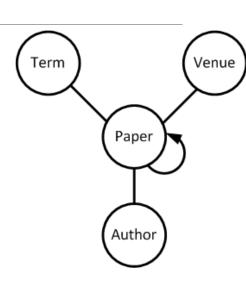
E-commerce network



Legal case network

Mining Text-attributed Graphs

- Text-attributed information networks contain rich semantic information and structure information.
 - Semantics: Ex. In an academic network, we can infer the topic of a paper from its title and abstract.
 - Structure: Ex. In an e-commerce network, two items frequently connected to the same user (co-viewed) can have similar functions.
- ☐ In a text-attributed information network, some nodes/edges can contain textual information, while others might not.
 - Ex. In an academic network, papers are associated with paper title/abstract; authors are not associated semantic-rich text.
 - Ex. In an e-commerce network, there might be text (review) between the item and user if the user leaves a review.



Examples of Text-attributed Graphs

- **Bibliographic information networks:** DBLP, ArXive, PubMed
 - Node types: paper (P), venue (V), author (A), and term (T)
 - □ Edge type: authors <u>write</u> papers, venues <u>publish</u> papers, papers <u>contain</u> terms
 - Text-rich nodes: paper (title/abstract)
- E-commerce item network: Amazon, Taobao
 - □ Node types: *item* (*I*), *brand* (*B*), ...
 - Edge types: items <u>co-viewed with</u> items, items <u>co-purchased with</u> items, items <u>belong to</u> brands
 - ☐ Text-rich nodes: item (title/description), brand (name)
- Legal case networks:
 - □ Node types: *cases, laws, academic papers, ...*
 - Edge types: cases <u>cited by</u> cased, cased <u>interpret</u> laws, cases <u>explained by</u> academic papers
 - Text-rich nodes: cases (content), laws (content), academic papers (content)

Examples of Text-attributed Graphs

- □ E-commerce user-item network: Amazon, Taobao
 - □ Node types: user (U), item (I), brand (B), ...
 - Edge types: items <u>co-viewed with</u> items, items <u>co-purchased with</u> items, items <u>belong to</u> brands, items <u>purchased by</u> users, items <u>carted by</u> users, ...
 - Text-rich nodes: item (title/description), brand (name)
 - Text-rich edges: items <u>reviewed by</u> users
- Social networks: twitter, Instagram
 - □ Node types: *users, posts, tags, ...*
 - Edge types: posts <u>written by</u> users, posts <u>liked by</u> users, users <u>messaged by</u> users, posts <u>associated with</u> tags, ...
 - Text-rich nodes: posts (content)
 - ☐ Text-rich edges: users <u>messaged by</u> users

What Can be Mined from Text-attributed Graphs?

- ☐ A raw text corpus can be derived from its "parent" text-attributed graph
 - Ex. Paper corpus from the original academic networks
- Text-attributed networks carry richer info. than the raw text corpus
- ☐ Text-attributed nodes & links imply more semantics, leading to richer discovery

Term

Paper

■ Ex.: DBLP: A Computer Science bibliographic database (network)

26			
	~	$\overline{}$	Yizhou Sun, <u>Jiawei Han, Charu C. Aggarwal, Nitesh V. Chawla</u> : When will it happen?: relationship prediction in heterogeneous information networks. <u>WSDM 2012</u> : 663-672
	(O)	<u>ر</u>	relationship prodiction in hotorogeneous information naturales, WCDM 2012: 662, 672
	ВіЬ	×	relationship prediction in neterogeneous information networks. <u>wsb/w 2012</u> . 003-072
	ITe≫ I	ML	

Knowledge hidden in DBLP Network	Mining Functions
Who are the leading researchers on Web search?	Ranking
Who are the peer researchers of Jure Leskovec?	Similarity Search
Whom will Christos Faloutsos collaborate with?	Relationship Prediction
Which relationships are most influential for an author to decide her topics?	Relation Strength Learning
How was the field of Data Mining emerged or evolving?	Network Evolution
Which authors are rather different from his/her peers in IR?	Outlier/anomaly detection

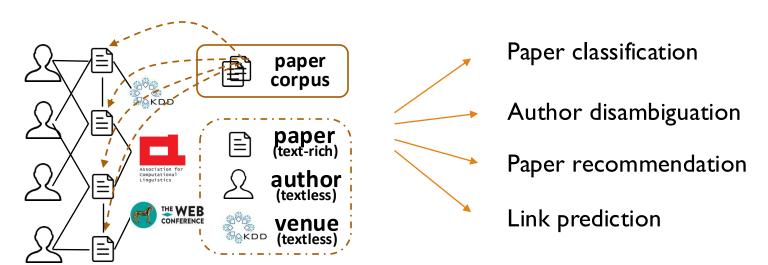
Outline

- **Motivation:** Why Mining Text-attributed Graphs?
- Content: Mining Text-attributed Graphs with Language Models

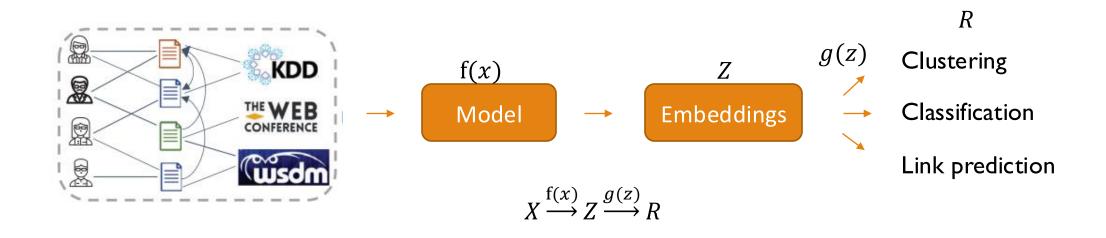
Representation learning with language models on text-attributed graphs 💛

- Language model pretraining text-attributed graphs
- Large language model reasoning on text-attributed graphs

- ☐ Given a text-attributed network, people are interested in various tasks.
 - Node classification, link prediction, and node clustering.
 - E.g., academic network
 - Automatically classify each paper.
 - ☐ Find the authors of a new paper.
 - Provide paper recommendation.

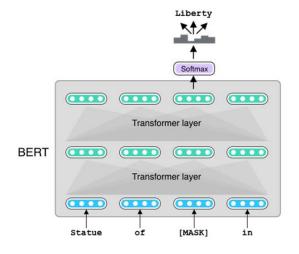


- ☐ Given a text-attributed network, people are interested in various tasks.
 - □ Node classification, link prediction, and node clustering.
- Learn representations for nodes/edges which can be utilized in various tasks.
 - Textual information & structure information

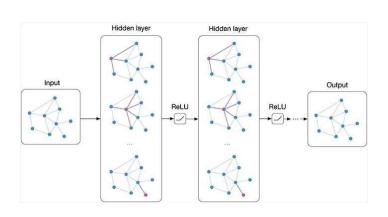


- ☐ Given a text-attributed network, people are interested in various tasks.
 - Node classification, link prediction, and node clustering.
- Learn representations for nodes/edges which can be utilized in various tasks.
 - Textual information & structure information

How to have a unified model?



Language models



Graph Neural Networks

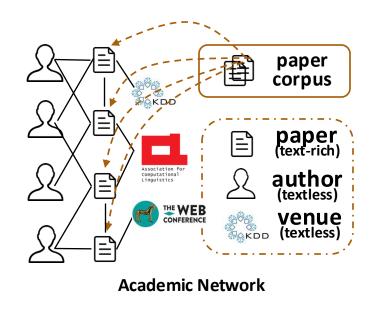
- ☐ Heterformer [1] (KDD 2023)
 - Graph-empowered Transformer
 - Heterogeneous text-attributed networks
- Edgeformers [2] (ICLR 2023)
 - Graph-empowered Transformers
 - Textual-edge networks
- METERN^[3] (NeurlPs 2024 GLFrontiers)
 - Multiplex text-attributed network

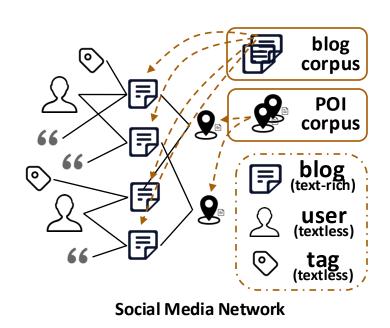
^[1] Heterformer: Transformer-based Deep Node Representation Learning on Heterogeneous Text-Rich Networks. KDD 2023.

^[2] Edgeformers: Graph-Empowered Transformers for Representation Learning on Textual-Edge Networks. ICLR 2023.

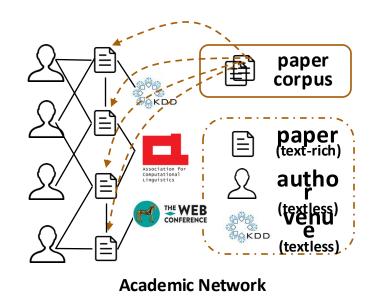
^[3] Learning Multiplex Representations on Text-Attributed Graphs with One Language Model Encoder. Arxiv 2023.

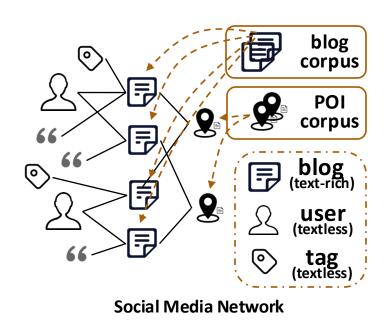
- ☐ Heterogeneous text-rich networks are ubiquitously utilized to model real-world data
 - Text-rich.
 - Heterogeneous.
 - E.g., Academic Networks, Social Media Networks



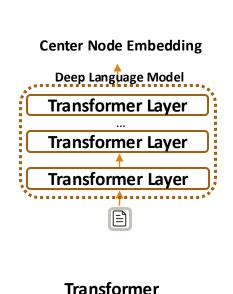


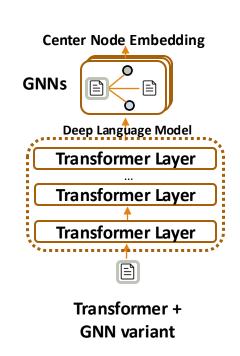
- Heterogeneity in those text-rich networks
 - Presence or absence of text.
 - Diversity of types.

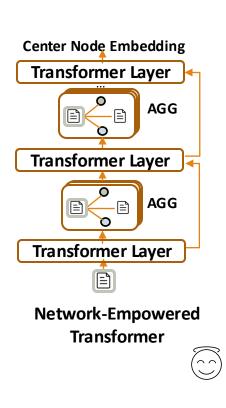




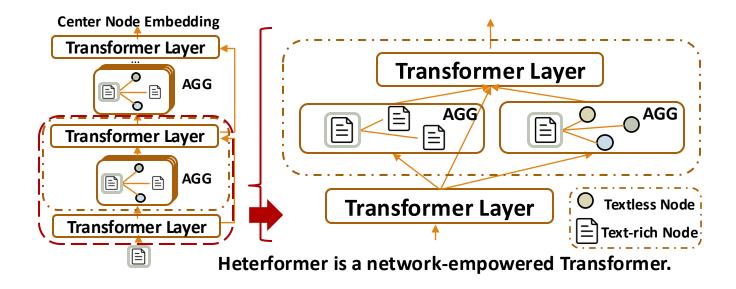
- Overall framework
 - ☐ Transformers + GNN vs. Network-Empowered Transformer



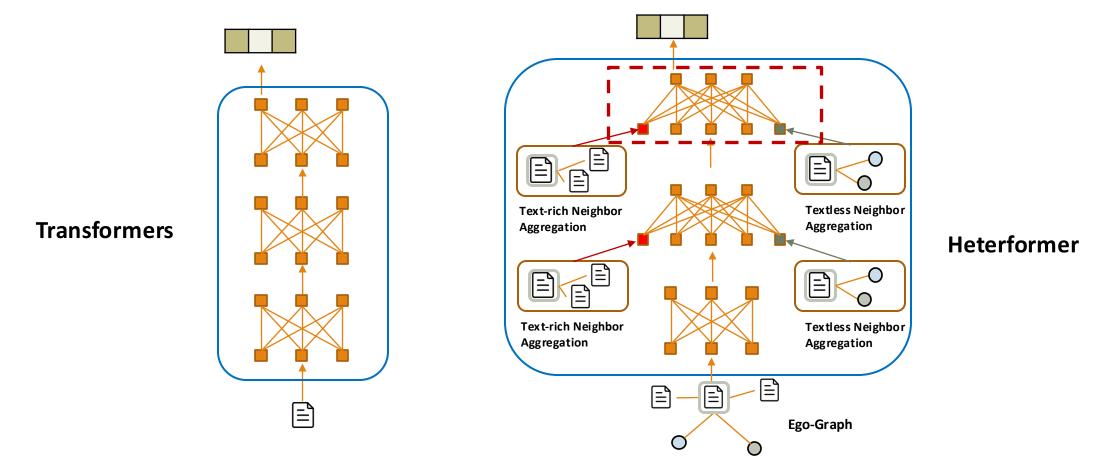




- Overall framework
 - ☐ Heterformer: a network-empowered Transformer.
 - Unifying text semantic encoding and network signal capturing.



- Text-Rich Node Encoding
 - Network-aware node text encoding with virtual neighbor tokens.
 - Multi-head attention-based heterogeneous neighbor aggregation.



- Textless Node Encoding
 - Node type heterogeneity-based representation

$$m{h}_{v_p}^{(l)} = m{W}_{\phi_i}^{(l)} m{h}_{v_p}^{(0)}, \quad ext{where } \phi(v_p) = \phi_i, \ \ \phi_i \in \mathcal{A}_{\mathrm{TL}}.$$

Node type heterogeneity

- Textless node embedding warm up
 - □ A great number of textless nodes will introduce a great number of randomly initialized parameters into the model -> underfitting.
 - Warm up to give textless node embeddings good initializations.

$$\min_{\boldsymbol{h}_{v_p}^{(l)}} \mathcal{L}_w = \sum_{\substack{v_p \in \mathcal{V} \\ \phi(v_p) \in \mathcal{A}_{\text{TL}}}} \sum_{\substack{v_u \in \widehat{N}_{v_p}}} -\log \frac{\exp(\bar{\boldsymbol{h}}_{v_u}^{\top} \boldsymbol{h}_{v_p}^{(l)})}{\exp(\bar{\boldsymbol{h}}_{v_u}^{\top} \boldsymbol{h}_{v_p}^{(l)}) + \sum_{v_u'} \exp(\bar{\boldsymbol{h}}_{v_u'}^{\top} \boldsymbol{h}_{v_p}^{(l)})},$$

- Model Training
 - Unsupervised training objective

$$\max_{\Theta} O = \prod_{\substack{v_i \in \mathcal{V} \\ \phi(v_i) \in \mathcal{A}_{\mathsf{TR}} \ \phi(v_j) \in \mathcal{A}_{\mathsf{TR}}}} p(v_j | v_i; \Theta), \qquad p(v_j | v_i; \Theta) = \frac{\exp(\boldsymbol{h}_{v_j}^\top \boldsymbol{h}_{v_i})}{\sum_{v_u \in \mathcal{V}, \phi(v_u) \in \mathcal{A}_{\mathsf{TR}}} \exp(\boldsymbol{h}_{v_u}^\top \boldsymbol{h}_{v_i})},$$

Negative sampling

$$\min_{\Theta} \mathcal{L} = \sum_{\substack{v_i \in \mathcal{V} \\ \phi(v_i) \in \mathcal{A}_{\text{TR}} \ \phi(v_j) \in \mathcal{A}_{\text{TR}}}} \sum_{\substack{v_j \in N_{v_i} \\ \phi(v_j) \in \mathcal{A}_{\text{TR}}}} -\log \frac{\exp(\boldsymbol{h}_{v_j}^\top \boldsymbol{h}_{v_i})}{\exp(\boldsymbol{h}_{v_j}^\top \boldsymbol{h}_{v_i}) + \sum_{v_u'} \exp(\boldsymbol{h}_{v_u'}^\top \boldsymbol{h}_{v_i})}.$$

- Datasets:
 - DBLP
 - CS papers from 1990 to 2020.
 - Twitter
 - POI-related tweets in LA and NY.
 - Goodreads
 - Books listed in Goodreads

Dataset	Node	Edge
DBLP	# paper*: 3,597,191 # venue: 28,638 # author: 2,717,797	# paper-paper: 36,787,329 # venue-paper: 3,633,613 # author-paper: 10,212,497
Twitter	# tweet*: 279,694 # POI*: 36,895 # hashtag: 72,297 # user: 76,398 # mention: 24,089	# tweet-POI: 279,694 # user-tweet: 195,785 # hashtag-tweet: 194,939 # mention-tweet: 50,901
Goodreads	# book*:1,097,438 # shelves: 6,632 # author: 205,891 # format: 768 # publisher: 62,934 # language code: 139	# book-book: 11,745,415 # shelves-book: 27,599,160 # author-book: 1,089,145 # format-book: 588,677 # publisher-book: 591,456 # language code-book: 485,733

Link prediction

	Method		DBLP		Twitter			Goodreads		
	Method	PREC	MRR	NDCG	PREC	MRR	NDCG	PREC	MRR	NDCG
	MeanSAGE	0.7019	0.7964	0.8437	0.6489	0.7450	0.7991	0.6302	0.7409	0.8001
	BERT	0.7569	0.8340	0.8726	0.7179	0.7833	0.8265	0.5571	0.6668	0.7395
GNN	BERT+MeanSAGE	0.8131	0.8779	0.9070	0.7201	0.7845	0.8275	0.7301	0.8167	0.8594
	BERT+MAXSAGE	0.8193	0.8825	0.9105	0.7198	0.7845	0.8276	0.7280	0.8164	0.8593
шо	BERT+GAT	0.8119	0.8771	0.9063	0.7231	0.7873	0.8300	0.7333	0.8170	0.8593
Homo	GraphFormers	0.8324	0.8916	0.9175	0.7258	0.7891	0.8312	0.7444	0.8260	0.8665
z	BERT+RGCN	0.7979	0.8633	0.8945	0.7111	0.7764	0.8209	0.7488	0.8303	0.8699
GNN	BERT+HAN	0.8136	0.8782	0.9072	0.7237	0.7880	0.8306	0.7329	0.8174	0.8597
	BERT+HGT	0.8170	0.8814	0.9098	0.7153	0.7800	0.8237	0.7224	0.8112	0.8552
Hetero	BERT+SHGN	0.8149	0.8785	0.9074	0.7218	0.7866	0.8295	0.7362	0.8195	0.8613
H	GraphFormers++	0.8233	0.8856	0.9130	0.7159	0.7799	0.8236	0.7536	0.8328	0.8717
	Heterformer	0.8474*	0.9019*	0.9255*	0.7272*	0.7908*	0.8328*	0.7633*	0.8400*	0.8773*

■ Node Classification

Table 3: Transductive text-rich node classification.

Method	DE	BLP	Goodreads			
Wethod	Micro-F1	Macro-F1	Micro-F1	Macro-F1		
BERT	0.6119	0.5476	0.8364	0.7713		
BERT+MaxSAGE	0.6179	0.5511	0.8447	0.7866		
BERT+MeanSAGE	0.6198	0.5522	0.8420	0.7826		
BERT+GAT	0.5943	0.5175	0.8328	0.7713		
GraphFormers	0.6256	0.5616	0.8388	0.7786		
BERT+HAN	0.5965	0.5211	0.8351	0.7747		
BERT+HGT	0.6575	0.5951	0.8474	0.7928		
BERT+SHGN	0.5982	0.5214	0.8345	0.7737		
GraphFormers++	0.6474	0.5790	0.8516	0.7993		
Heterformer	0.6695*	0.6062*	0.8578*	0.8076*		

Table 4: Inductive text-rich node classification.

Method	DE	BLP	Goodreads			
Method	Micro-F1	Macro-F1	Micro-F1	Macro-F1		
BERT	0.5996	0.5318	0.8122	0.7371		
BERT+MaxSAGE	0.6117	0.5435	0.8368	0.7749		
BERT+MeanSAGE	0.6129	0.5431	0.8350	0.7721		
BERT+GAT	0.5879	0.5150	0.8249	0.7590		
GraphFormers	0.6197	0.5548	0.8330	0.7683		
BERT+HAN	0.5948	0.5165	0.8279	0.7626		
BERT+HGT	0.6467	0.5835	0.8390	0.7798		
BERT+SHGN	0.5955	0.5202	0.8280	0.7626		
GraphFormers++	0.6386	0.5696	0.8427	0.7848		
Heterformer	0.6600*	0.5976*	0.8507*	0.7977*		

■ Node Clustering

Table 6: Node clustering.

Method	DE	SLP	Goodreads		
Method	NMI	ARI	NMI	ARI	
BERT	0.2570	0.3349	0.2325	0.4013	
BERT+MaxSAGE	0.2615	0.3490	0.2205	0.4173	
BERT+MeanSAGE	0.2628	0.3488	0.2449	0.4329	
BERT+GAT	0.2598	0.3419	0.2408	0.4185	
GraphFormers	0.2633	0.3455	0.2362	0.4139	
BERT+HAN	0.2568	0.3401	0.2391	0.4266	
BERT+HGT	0.2469	0.3392	0.2427	0.4296	
BERT+SHGN	0.2589	0.3431	0.2373	0.4171	
GraphFormers++	0.2566	0.3432	0.2372	0.4211	
Heterformer	0.2707*	0.3639*	0.2429	0.4199	

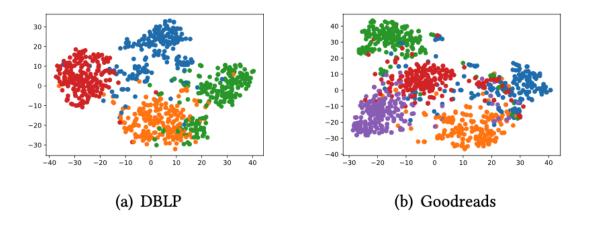


Figure 3: Embedding visualization.

Outline

- **Motivation:** Why Mining Text-attributed Graphs?
- **Content:** Mining Text-attributed Graphs with Language Models

- Representation learning with language models on text-attributed graphs
- Language model pretraining text-attributed graphs
- Large language model reasoning on text-attributed graphs

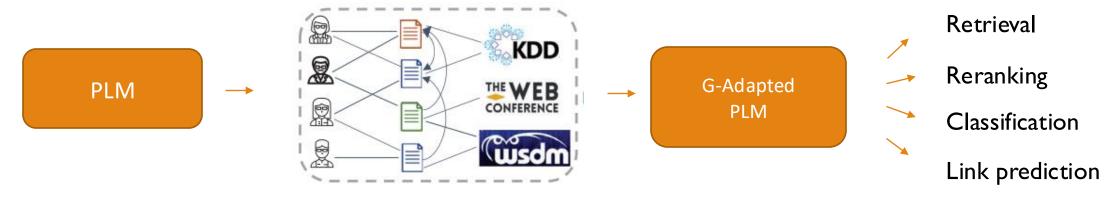
Why do we need language model pretraining on network?

- Given a text-rich network, people are interested in various downstream tasks
 - Document/node classification, document retrieval and link prediction
 - E.g., academic network
 - Automatically classify each paper
 - ☐ Find the authors of a new paper
 - Provide paper recommendation

Academic network

Why do we need language model pretraining on network?

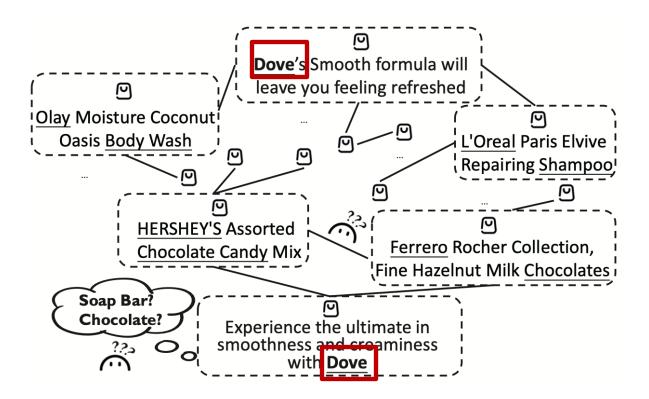
- Given a text-rich network, people are interested in various downstream tasks
 - Document/node classification, document retrieval and link prediction
- Text-rich network contains rich unsupervised semantic information
 - Alleviate human labeling burden for downstream tasks



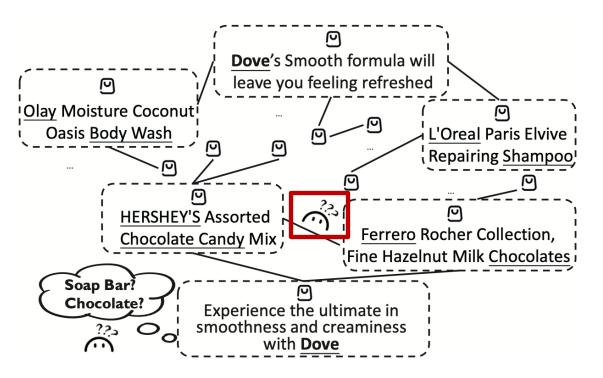
Pretraining on a Text-rich Network G

Finetuning on downstream tasks

- ☐ How to design pretraining strategies to help LMs extract unsupervised semantic information from the network?
 - Motivation 1: On token-level, documents can help facilitate the understanding of tokens.



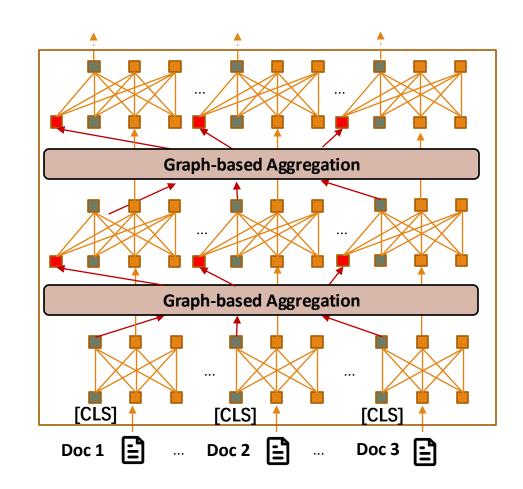
- ☐ How to design pretraining strategies to help LMs extract unsupervised semantic information from the network?
 - Motivation 2: On document-level, the two connected nodes can have quite related overall textual semantics.



Mode architecture

neighbor aggregation
hidden state
[CLS] token hidden state
word token hidden state

☐ GraphFormers: Graph-empowered Transformer architecture



$$\boldsymbol{z}_{x}^{(l)} = \text{GNN}(\{\boldsymbol{H}_{y}^{(l)} [\text{CLS}] | y \in N_{x}\}), \quad (1)$$

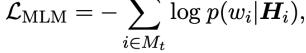
$$\widetilde{\boldsymbol{H}}_{x}^{(l)} = \operatorname{Concate}(\boldsymbol{z}_{x}^{(l)}, \boldsymbol{H}_{x}^{(l)}),$$
 (2)

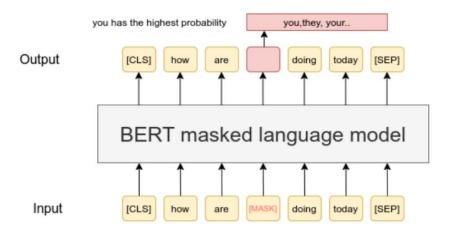
$$\widetilde{\boldsymbol{H}}_{x}^{(l)'} = \text{LN}(\boldsymbol{H}_{x}^{(l)} + \text{MHA}_{asy}(\widetilde{\boldsymbol{H}}_{x}^{(l)})), \quad (3)$$

$$\boldsymbol{H}_{x}^{(l+1)} = \text{LN}(\widetilde{\boldsymbol{H}}_{x}^{(l)'} + \text{MLP}(\widetilde{\boldsymbol{H}}_{x}^{(l)'})), \quad (4)$$

- Pretraining strategy 1: Network-contextualized masked language modeling
 - Original masked language modeling
 - BERT, domain adaptation
 - The semantics of each token can be reflected by its contexts.

$$\mathcal{L}_{ ext{MLM}} = -\sum_{i \in M_t} \log p(w_i|oldsymbol{H}_i),$$





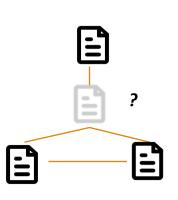
- Ours
 - In node MLM -> Network contextualized MLM
 - Use both in-node text context and neighbor node context to conduct masked token prediction
 - Facilitate the LM to understand both in-node token correlation and network-contextualized text semantic

relatedness

$$\mathcal{L}_{ ext{NMLM}} = -\sum_{i \in M_t} \log p(w_i|oldsymbol{H}_x, oldsymbol{z}_x),$$

- ☐ Pretraining strategy 2: Masked Node Prediction
 - We dynamically hold out a subset of nodes from the network $(M_v \subseteq V)$, mask them, and train the LM to predict the masked nodes based on the adjacent network structure.
 - LM will absorb document semantic hints hidden inside the network structure.

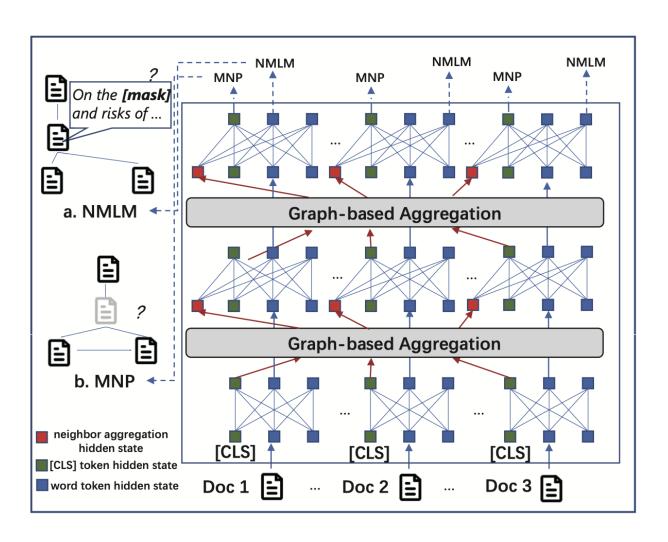
$$\mathcal{L}_{ ext{MNP}} = -\sum_{v_j \in M_v} \log p(v_j | oldsymbol{G}_{v_j})$$



- Directly optimizing masked node prediction is computationally expensive
 - Representations for all candidates/neighboring nodes
- We prove that masked node prediction can be theoretically transferred to a computationally cheaper pairwise link prediction task.

$$\begin{split} &\prod_{v_{\texttt{[MASK]}} \in M_v} p(v_{\texttt{[MASK]}} = v_i | v_k \in N_{v_{\texttt{[MASK]}}}) \\ &\propto \prod_{v_{\texttt{[MASK]}} \in M_v} p(v_k \in N_{v_{\texttt{[MASK]}}} | v_{\texttt{[MASK]}} = v_i) \\ &= \prod_{v_{\texttt{[MASK]}} \in M_v} \prod_{v_k \in N_{v_{\texttt{[MASK]}}}} p(v_k | v_{\texttt{[MASK]}} = v_i) \\ &= \prod_{v_{\texttt{[MASK]}} \in M_v} \prod_{v_k \in N_{v_{\texttt{[MASK]}}}} p(v_k \longleftrightarrow v_i) \end{split}$$

Joint pretraining

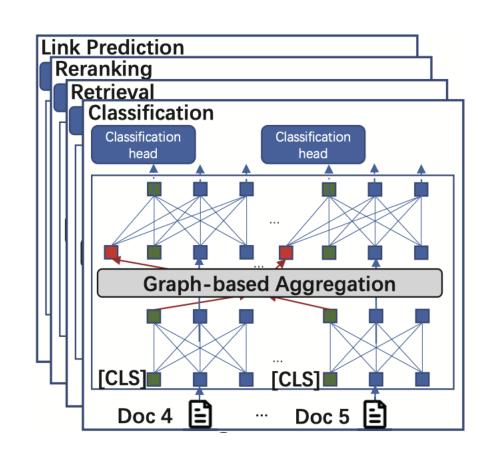


$$\mathcal{L}_{ ext{NMLM}} = -\sum_{i \in M_t} \log p(w_i | oldsymbol{H}_x, oldsymbol{z}_x)$$

$$egin{aligned} \mathcal{L}_{ ext{MNP}} &= -\sum_{v_j \in M_v} \sum_{v_k \in N_{v_j}} \log p(v_j \leftrightarrow v_k) \ &= -\sum_{v_j \in M_v} \sum_{v_k \in N_{v_j}} \log rac{\exp(oldsymbol{h}_{v_j}^ op oldsymbol{h}_{v_k})}{\exp(oldsymbol{h}_{v_j}^ op oldsymbol{h}_{v_k}) + \sum_{u'} \exp(oldsymbol{h}_{v_j}^ op oldsymbol{h}_{v_u'}) \end{aligned}$$

$$\mathcal{L} = \mathcal{L}_{ ext{NMLM}} + \mathcal{L}_{ ext{MNP}}$$

- Finetuning
 - ☐ Texts in the network (thus with neighbor info)
 - Feed both node text sequence and neighbor text sequences
 - Texts not in the network (neighbor info not available)
 - ☐ Feed text sequence and leave neighbor text sequences blank



- Datasets
 - MAPLE
 - Mathematics, Geology, Economy
 - Academic network
 - Amazon
 - □ Cloth, Sports
 - E-commerce network
- Downstream tasks
 - Classification
 - Retrieval
 - Reranking
 - Link prediction

Field of Study	#Nodes	#Edges	#Fine-Class	#Coarse-Class
Mathematics	490,551	2,150,584	14,271	18
Geology	431,834	1,753,762	7,883	17
Economics	178,670	1,042,253	5,205	40
Clothes	889,225	7,876,427	2,771	9
Sports	314,448	3,461,379	3,034	16

Classification

Table 2: Experiment results on Classification. We show the mean_{std} of three runs for all the methods.

Mathad	Mathematics		Geo	Geology		omy	Clo	thes	Sports	
Method	Macro-F1	Micro-F1								
BERT	$18.14_{0.07}$	$22.04_{0.32}$	21.97 _{0.87}	$29.63_{0.36}$	14.17 _{0.08}	$19.77_{0.12}$	$45.10_{1.47}$	$68.54_{2.25}$	$31.88_{0.23}$	$34.58_{0.56}$
GraphFormers	$18.69_{0.52}$	$23.24_{0.46}$	$22.64_{0.92}$	$31.02_{1.16}$	$13.68_{1.03}$	$19.00_{1.44}$	$46.27_{1.92}$	$68.97_{2.46}$	$43.77_{0.63}$	$50.47_{0.78}$
SciBERT	$23.50_{0.64}$	$23.10_{2.23}$	$29.49_{1.25}$	$37.82_{1.89}$	$15.91_{0.48}$	$21.32_{0.66}$	-	-	-	-
SPECTER	$23.37_{0.07}$	$29.83_{0.96}$	$30.40_{0.48}$	$38.54_{0.77}$	$16.16_{0.17}$	$19.84_{0.47}$	-	-	-	-
SimCSE (unsup)	$20.12_{0.08}$	$26.11_{0.39}$	$38.78_{0.19}$	$38.55_{0.17}$	$14.54_{0.26}$	$19.07_{0.43}$	$42.70_{2.32}$	$58.72_{0.34}$	$41.91_{0.85}$	$59.19_{0.55}$
SimCSE (sup)	$20.39_{0.07}$	$25.56_{0.00}$	$25.66_{0.28}$	$33.89_{0.40}$	$15.03_{0.53}$	$18.64_{1.32}$	$52.82_{0.87}$	$75.54_{0.98}$	$46.69_{0.10}$	$59.19_{0.55}$
LinkBERT	$15.78_{0.91}$	$19.75_{1.19}$	$24.08_{0.58}$	$31.32_{0.04}$	$12.71_{0.12}$	$16.39_{0.22}$	$44.94_{2.52}$	$65.33_{4.34}$	$35.60_{0.33}$	$38.30_{0.09}$
BERT.MLM	$23.44_{0.39}$	$31.75_{0.58}$	$36.31_{0.36}$	48.04 _{0.69}	$16.60_{0.21}$	$22.71_{1.16}$	$46.98_{0.84}$	$68.00_{0.84}$	$62.21_{0.13}$	$75.43_{0.74}$
SciBERT.MLM	$23.34_{0.42}$	$30.11_{0.97}$	$36.94_{0.28}$	$46.54_{0.40}$	$16.28_{0.38}$	$21.41_{0.81}$	-	-	-	-
SimCSE.in-domain	$25.15_{0.09}$	$29.85_{0.20}$	$38.91_{0.08}$	$48.93_{0.14}$	$18.08_{0.22}$	$23.79_{0.44}$	$57.03_{0.20}$	$80.16_{0.31}$	$65.57_{0.35}$	$75.22_{0.18}$
PATTON	27.58 _{0.03}	32.82 _{0.01}	$39.35_{0.06}$	$48.19_{0.15}$	$19.32_{0.05}$	$25.12_{0.05}$	60.14 _{0.28}	84.88 _{0.09}	67.57 _{0.08}	78.60 _{0.15}
SciPATTON	$27.35_{0.04}$	$31.70_{0.01}$	39.65 _{0.10}	48.93 _{0.06}	19.91 _{0.08}	25.68 _{0.32}	-	-	-	-
w/o NMLM	$-\overline{25.91}_{0.45}$	$27.79_{2.07}$	$\bar{3}8.78_{0.19}$	$48.48_{0.17}$	$18.86_{0.23}$	$24.\overline{25}_{0.26}$	$56.68_{0.24}$	$-50.\overline{27}_{0.17}$	$65.83_{0.28}$	$76.\overline{24}_{0.54}$
w/o MNP	$24.79_{0.65}$	$29.44_{1.50}$	$38.00_{0.73}$	$47.82_{1.06}$	$18.69_{0.59}$	$25.63_{1.44}$	$47.35_{1.20}$	$68.50_{2.60}$	$64.23_{1.53}$	$76.03_{1.67}$

Patton: Language Model Pretraining on Text-Rich Networks (ACL 2023)

Retrieval

Table 3: Experiment results on Retrieval. We show the mean_{std} of three runs for all the methods.

Mathad	Mathematics		Geology		Economy		Clothes		Sports	
Method	R@50	R@100	R@50	R@100	R@50	R@100	R@50	R@100	R@50	R@100
BM25	20.76	24.55	19.02	20.92	19.14	22.49	15.76	15.88	22.00	23.96
BERT	$16.73_{0.17}$	$22.66_{0.18}$	$18.82_{0.39}$	$25.94_{0.39}$	$23.95_{0.25}$	$31.54_{0.21}$	40.77 _{1.68}	$50.40_{1.41}$	$32.37_{1.09}$	$43.32_{0.96}$
GraphFormers	$16.65_{0.12}$	$22.41_{0.10}$	$18,92_{0.60}$	$25.94_{0.39}$	$24.48_{0.36}$	$32.16_{0.40}$	$41.77_{2.05}$	$51.26_{2.27}$	$32.39_{0.89}$	$43.29_{1.12}$
SciBERT	$24.70_{0.17}$	$33.55_{0.31}$	$23.71_{0.89}$	$30.94_{0.95}$	$29.80_{0.66}$	$38.66_{0.52}$	-	-	-	-
SPECTER	$23.86_{0.25}$	$31.11_{0.31}$	$26.56_{1.05}$	$34.04_{1.32}$	$31.26_{0.15}$	$40.79_{0.11}$	-	-	-	-
SimCSE (unsup)	$17.91_{0.26}$	$23.19_{0.29}$	$20.45_{0.20}$	$26.82_{0.26}$	$25.83_{0.23}$	$33.42_{0.28}$	$44.90_{0.35}$	$54.76_{0.38}$	$38.81_{0.35}$	$49.30_{0.44}$
SimCSE (sup)	$20.29_{0.41}$	$26.23_{0.51}$	$22.34_{0.49}$	$29.63_{0.55}$	$28.07_{0.38}$	$36.51_{0.37}$	$44.69_{0.59}$	$54.70_{0.77}$	$40.31_{0.43}$	$50.55_{0.41}$
LinkBERT	$17.25_{0.30}$	$23.21_{0.47}$	$17.14_{0.75}$	$23.05_{\scriptstyle 0.74}$	$22.69_{0.30}$	$30.77_{0.36}$	$28.66_{2.97}$	$37.79_{3.82}$	$31.97_{0.54}$	$41.77_{0.67}$
BERT.MLM	$20.69_{0.21}$	$27.17_{0.25}$	$32.13_{0.36}$	$41.74_{0.42}$	27.13 _{0.04}	$36.00_{0.14}$	$52.41_{1.71}$	$63.72_{1.79}$	$54.10_{0.81}$	63.14 _{0.83}
SciBERT.MLM	$20.65_{0.21}$	$27.67_{0.32}$	$31.65_{0.71}$	$40.52_{0.76}$	$29.23_{0.67}$	$39.18_{0.73}$	-	-	-	-
SimCSE.in-domain	$24.54_{0.05}$	$31.66_{0.09}$	$33.97_{0.07}$	$44.09_{0.19}$	$28.44_{0.31}$	$37.81_{0.27}$	$61.42_{0.84}$	$72.25_{0.86}$	$53.77_{0.22}$	$63.73_{0.30}$
PATTON	$27.44_{0.15}$	$34.97_{0.21}$	34.94 _{0.23}	$45.01_{0.28}$	$32.10_{0.51}$	$42.19_{0.62}$	68.62 _{0.38}	77.54 _{0.19}	58.63 _{0.31}	68.53 _{0.55}
SciPatton	$31.40_{0.52}$	40.38 _{0.66}	$40.69_{0.52}$	51.31 _{0.48}	35.82 _{0.69}	$46.05_{0.69}$	-	-	-	-
w/o NMLM	$30.85_{0.14}$	$39.89_{0.23}$	$39.29_{0.07}$	$49.59_{0.11}$	$35.\overline{17}_{0.31}$	46.07 _{0.20}	$-65.60_{0.26}$	$75.19_{0.32}$	$57.05_{0.14}$	$67.\overline{22}_{0.12}$
w/o MNP	$22.47_{0.07}$	$30.20_{0.15}$	$31.28_{0.89}$	$40.54_{0.97}$	$29.54_{0.36}$	$39.57_{0.57}$	$60.20_{0.73}$	$69.85_{0.52}$	$51.73_{0.41}$	$60.35_{0.78}$

Patton: Language Model Pretraining on Text-Rich Networks (ACL 2023)

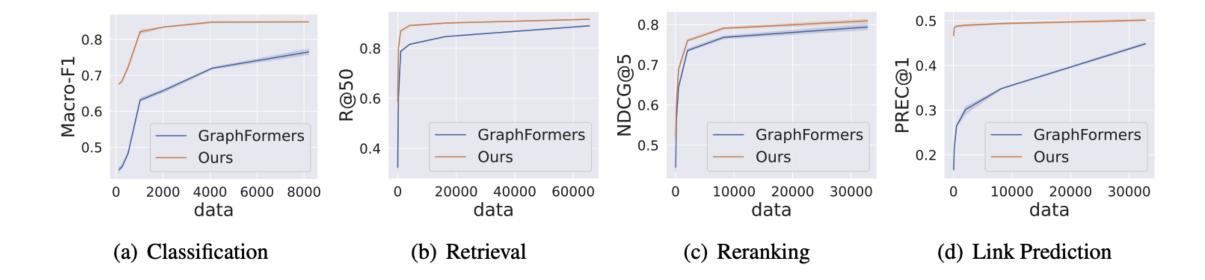
☐ Link prediction

Table 5: Experiment results on Link Prediction. We show the mean_{std} of three runs for all the methods.

Method	Mathematics		Geology		Economy		Clothes		Sports	
1,10,110,0	PREC@1	MRR	PREC@1	MRR	PREC@1	MRR	PREC@1	MRR	PREC@1	MRR
BERT	$6.60_{0.16}$	$12.96_{0.34}$	$6.24_{0.76}$	$12.96_{1.34}$	$4.12_{0.08}$	$9.23_{0.15}$	$24.17_{0.41}$	$34.20_{0.45}$	$16.48_{0.45}$	$25.35_{0.52}$
GraphFormers	$6.91_{0.29}$	$13.42_{0.34}$	$6.52_{1.17}$	$13.34_{1.81}$	$4.16_{0.21}$	$9.28_{0.28}$	$23.79_{0.69}$	$33.79_{0.66}$	$16.69_{0.36}$	$25.74_{0.48}$
SciBERT	$14.08_{0.11}$	$23.62_{0.10}$	$7.15_{0.26}$	$14.11_{0.39}$	$5.01_{1.04}$	$10.48_{1.79}$	-	-	-	-
SPECTER	$13.44_{0.5}$	$21.73_{0.65}$	$6.85_{0.22}$	$13.37_{0.34}$	$6.33_{0.29}$	$12.41_{0.33}$	-	-	-	-
SimCSE (unsup)	$9.85_{0.10}$	$16.28_{0.12}$	$7.47_{0.55}$	$14.24_{0.89}$	$5.72_{0.26}$	$11.02_{0.34}$	$30.51_{0.09}$	$40.40_{0.10}$	$22.99_{0.07}$	$32.47_{0.06}$
SimCSE (sup)	$10.35_{0.52}$	$17.01_{0.72}$	$10.10_{0.04}$	$17.80_{0.07}$	$5.72_{0.26}$	$11.02_{0.34}$	$35.42_{0.06}$	$46.07_{0.06}$	$27.07_{0.15}$	$37.44_{0.16}$
LinkBERT	$8.05_{0.14}$	$13.91_{0.09}$	$6.40_{0.14}$	$12.99_{0.17}$	$2.97_{0.08}$	$6.79_{0.15}$	$30.33_{0.56}$	$39.59_{0.64}$	$19.83_{0.09}$	$28.32_{0.04}$
BERT.MLM	$17.55_{0.25}$	$29.22_{0.26}$	$14.13_{0.19}$	$25.36_{0.20}$	$9.02_{0.09}$	$16.72_{0.15}$	$42.71_{0.31}$	$54.54_{0.35}$	$29.36_{0.09}$	$41.60_{0.05}$
SciBERT.MLM	$22.44_{0.08}$	$34.22_{0.05}$	$16.22_{0.03}$	$27.02_{0.07}$	$9.80_{0.00}$	$17.72_{0.01}$	-	-	-	-
SimCSE.in-domain	$33.55_{0.05}$	$46.07_{\scriptstyle 0.07}$	$24.56_{0.06}$	$36.89_{0.11}$	$16.77_{0.10}$	$26.93_{0.01}$	$60.41_{0.03}$	71.86 _{0.06}	$49.17_{\scriptstyle 0.04}$	$63.48_{0.03}$
Patton	$70.41_{0.11}$	80.21 _{0.04}	$44.76_{0.05}$	57.71 _{0.04}	$57.04_{0.05}$	$68.35_{0.04}$	$58.59_{0.12}$	$70.12_{0.12}$	$46.68_{0.09}$	$60.96_{0.23}$
SciPatton	71.22 _{0.17}	$80.79_{0.10}$	44.95 _{0.24}	$57.84_{0.25}$	57.36 _{0.26}	68.71 _{0.31}	-	-	-	-
w/o NMLM	$\bar{7}1.04_{0.13}$	$80.60_{0.07}$	$-44.\overline{33}_{0.23}$	$57.29_{0.22}$	$56.64_{0.25}$	$\overline{68.12}_{0.16}$	$\overline{60.30}_{0.03}$	$-71.67_{0.07}$	49.72 _{0.06}	$63.76_{0.04}$
w/o MNP	$63.06_{0.23}$	$74.26_{0.11}$	$33.84_{0.60}$	$47.02_{0.65}$	$44.46_{0.03}$	$57.05_{0.04}$	$49.62_{0.06}$	$61.61_{0.01}$	$36.05_{0.20}$	$49.78_{0.25}$

Patton: Language Model Pretraining on Text-Rich Networks (ACL 2023)

- How pretraining help the model?
 - Finetune data size study

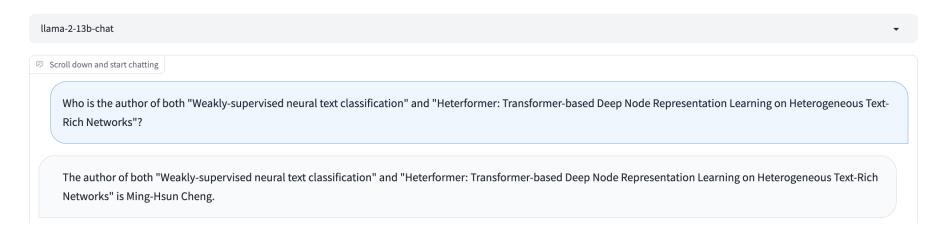


Outline

- Motivation: Why Mining Text-attributed Graphs?
- Content: Mining Text-attributed Graphs with Language Models
 - Representation learning with language models on text-attributed graphs
 - Language model pretraining text-attributed graphs
 - □ Large language model reasoning on text-attributed graphs 💛

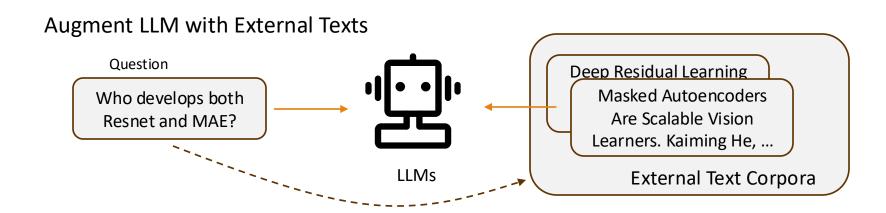
Motivation

Large language models suffer from hallucination and misinformation.



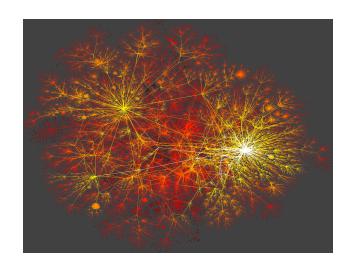
Motivation

 Existing works propose to augment LLMs with individual text units retrieved from external knowledge corpora to alleviate the issue (RAG).

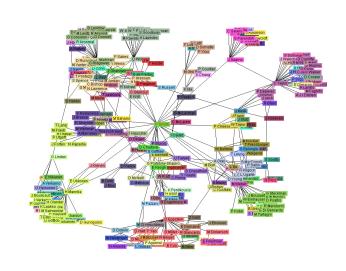


Motivation

- However, in many domains, texts are interconnected which form a (text-attributed) graph.
 - □ Legal case opinions are linked by citation relationships.
 - □ Web pages are connected by hyperlinks (Common Crawl).



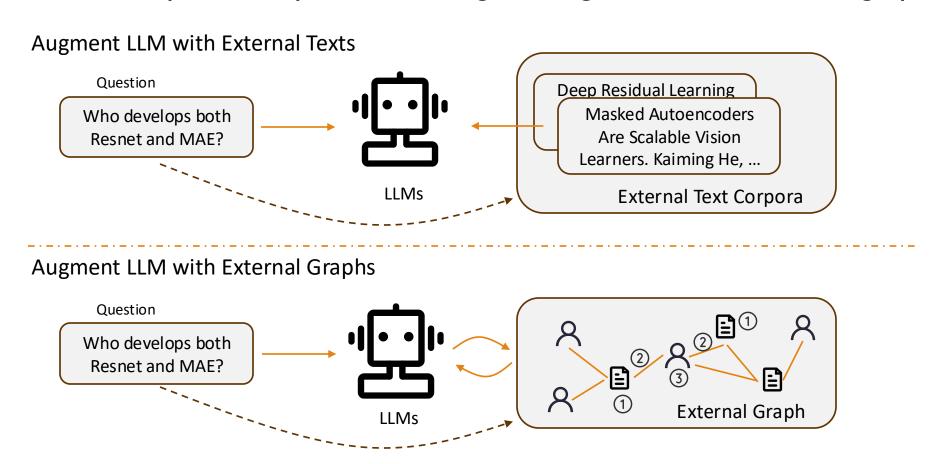
World-Wide Web



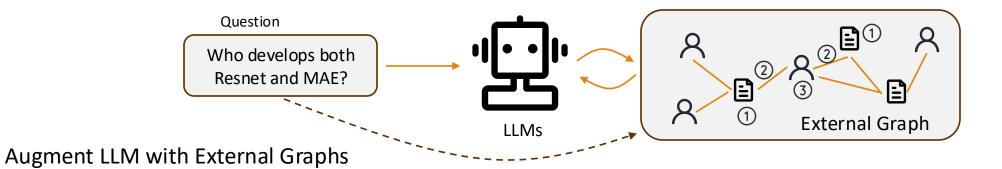
Co-author network

Motivation

 \square This motivates us to explore the problem of augmenting LLMs with external graphs.

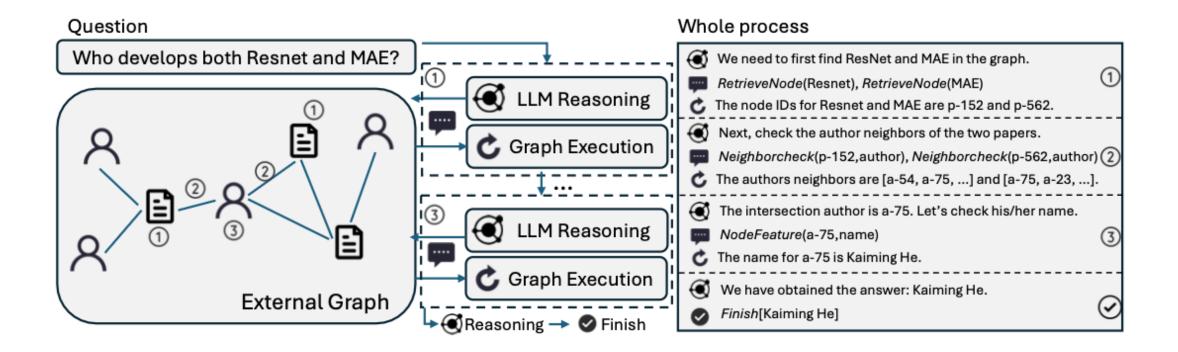


- □ Can RAG be directly adopted for LLMs on graphs?
 - Structure context:
 - □ Retrieval augmentation can find individual nodes/texts from the graphs.
 - However, knowledge on the graph also lies in the structure which cannot be captured by single nodes.
 - Graph size explosion:
 - It is feasible to convert local subgraph structure into text descriptions as the input contexts to LLMs.
 - □ However, the size of the local subgraph increases exponentially as the hop number increases.
 - □ It will result in an excessively long context sequence and cause LLM to be lost in the middle.



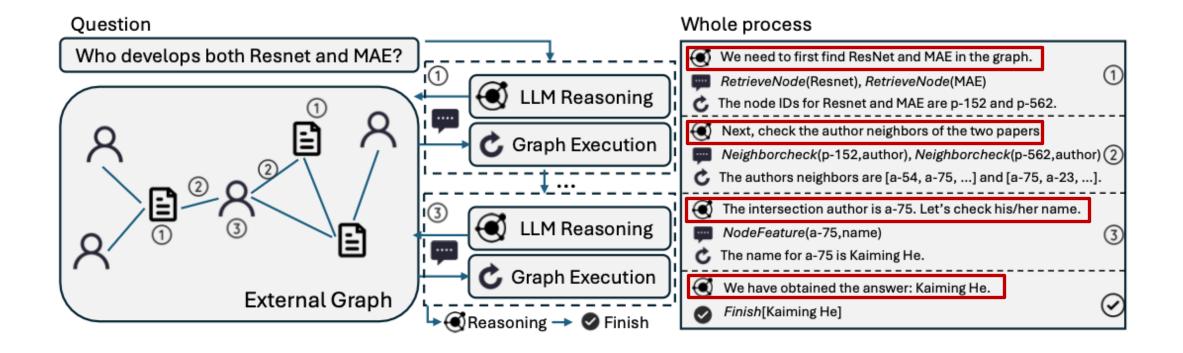
□ Framework

Iterative reasoning, interaction and execution.

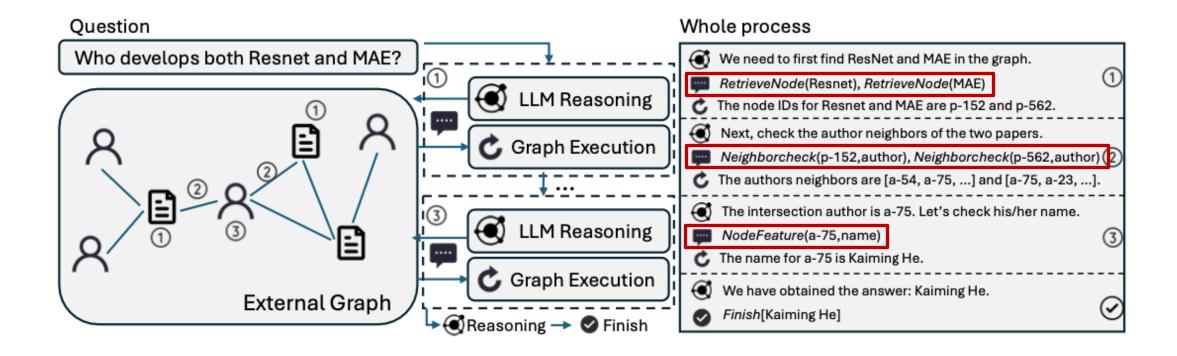


LLM reasoning

- LLM conduct reasoning on what further external information from graph is needed.
- If the question is answerable with the current contexts from graphs.



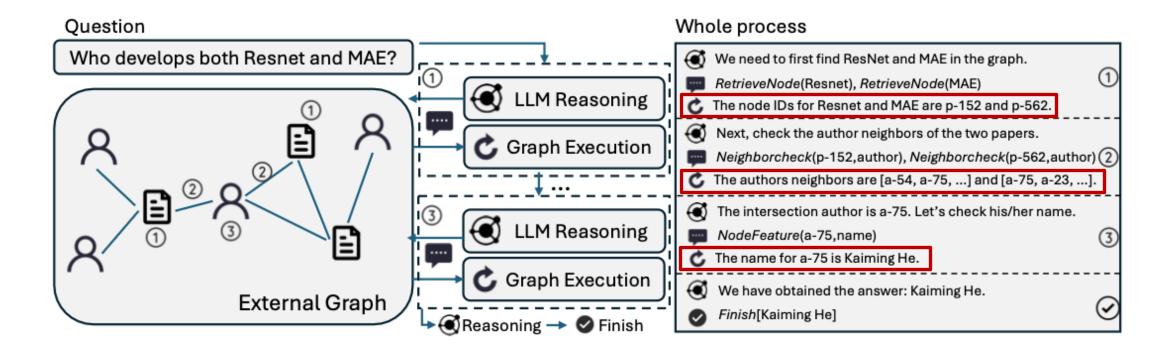
- Interaction between LLMs and graphs
 - Let LLMs know how to interact with the graphs and fetch relevant information.



- Interaction between LLMs and graphs
 - We pre-define four graph functions to cover both the semantic and structure information on graphs:
 - RetrieveNode(Text): Identify related nodes in the graph with semantic search.
 - □ NodeFeature(NodeID, FeatureName): Extract the textual feature information for a specific node.
 - □ NeighborCheck(NodelD, NeighborType): Return the neighboring information for a specific node.
 - □ NodeDregree(NodeID, NeighborType): Return the degree of a specific neighbor type for a node.

Execution on graphs

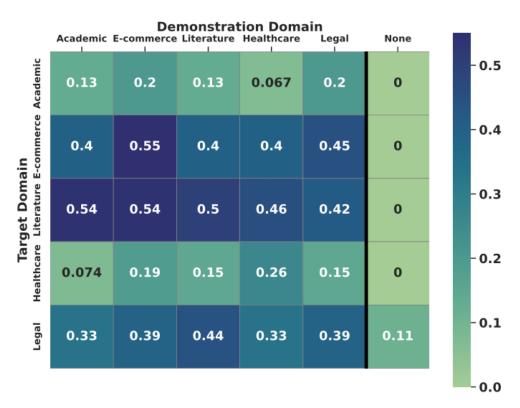
Call the functions and fetch relevant information from the graph.



Overall performance

Model		Academic		E-commerce		Literature		Healthcare		Legal	
	Model	R-L	GPT4score	R-L	GPT4score	R-L	GPT4score	R-L	GPT4score	R-L	GPT4score
	LLaMA-2-13b-chat	8.13	8.03	7.01	12.00	5.32	20.83	5.25	13.70	15.97	16.11
Base	Mixtral-8x7b	9.02	8.14	12.54	18.00	7.50	22.50	3.88	20.00	12.74	16.11
В	GPT-3.5-turbo	6.05	12.80	9.18	23.50	10.43	26.67	5.83	14.44	10.51	20.00
Text RAG	LLaMA-2-13b-chat	8.69	8.52	9.23	12.50	7.61	20.00	1.44	5.93	15.37	16.67
	Mixtral-8x7b	8.44	8.02	23.14	29.50	13.35	27.92	3.22	16.67	19.69	25.00
T R	GPT-3.5-turbo	5.83	9.91	14.06	20.00	10.04	20.83	4.57	8.52	18.14	23.89
ч.	LLaMA-2-13b	22.01	22.97	12.48	20.00	9.25	20.00	2.97	4.81	17.98	17.22
Graph RAG	Mixtral-8x7b	27.77	31.20	32.87	37.00	20.08	33.33	8.66	15.19	23.48	25.56
5 2	GPT-3.5-turbo	18.45	26.98	17.52	28.00	14.94	24.17	8.69	14.07	18.66	22.22
	GRAPH-COT	31.89	33.48	42.40	44.50	41.59	46.25	22.33	28.89	30.52	28.33

■ How important are the demonstrations for Graph-CoT?



- LLMs suffer if given insufficient instructions (only graph definition and interaction function definitions).
- In-domain demonstrations (diagonal) perform quite well, and Graph-CoT is overall robust to demonstration domain-shift.

■ How different LLMs perform in Graph-CoT?

Model	GPT4score
GRAPH-COT	
w. LLaMA-2-13b-chat	16.04
w. Mixtral-8x7b	36.46
w. GPT-3.5-turbo	36.63
w. GPT-4	46.28

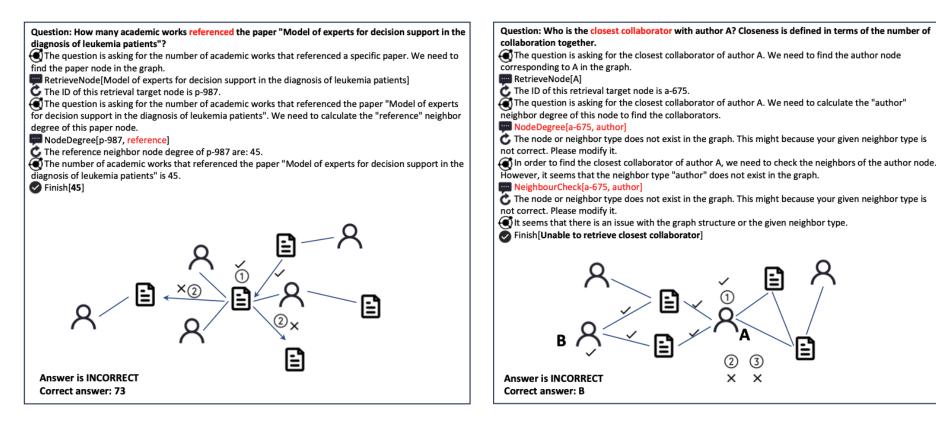
An LLM with more advanced instruction following ability and reasoning ability (i.e., GPT-4) can contribute to better performance in Graph-CoT.

☐ Graph RAG vs Graph-CoT

Model	GPT4score
GPT-3.5-turbo	19.48
+ node retrieval	16.63
+ 1-hop subgraph retrieval	23.09
+ 2-hop subgraph retrieval	22.12
+ GRAPH-COT	36.29

- Retrieving I-hop ego-graph performs the best but still underperforms Graph-CoT.
- The number of nodes/texts grow exponentially as the hop number grows linearly.
- □ A large-hop ego-graph will lead to a super long context -> lost in the middle.

Case Study



- The LLM sometimes refers to the occurrence of the word rather than understanding its semantic meaning.
- The LLM sometimes misunderstands the structure of the graph, resulting in interaction failures.

Thank you! Q/A