

CSCE 689 - Special Topics in NLP for Science

Lecture 17: Language Models with Academic Graphs

Yu Zhang

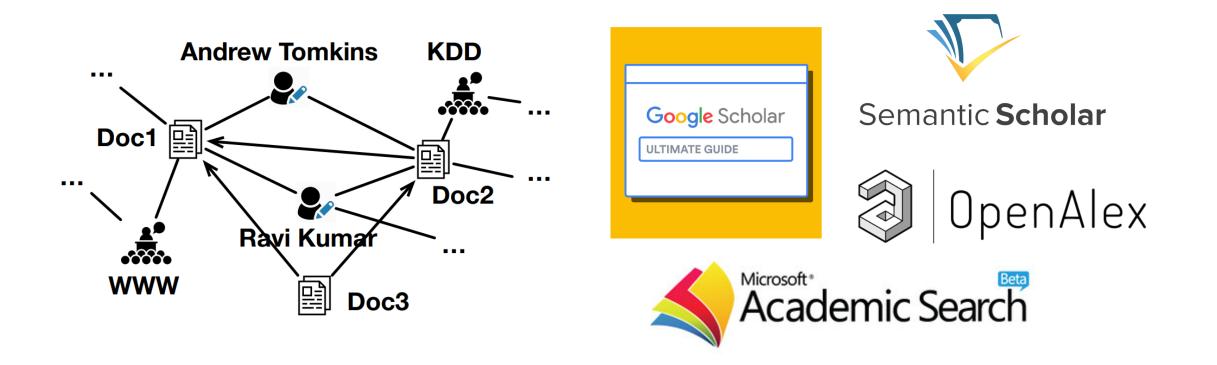
yuzhang@tamu.edu

March 20, 2025

Course Website: https://yuzhang-teaching.github.io/CSCE689-S25.html

Academic Graphs

- Nodes: Paper, Venue, Author, (Year, Field, Affiliation, ...)
- Edges: Paper \rightarrow Paper, Paper-Venue, Paper-Author, (Author-Affiliation, ...)
- Node Attributes: Paper title/abstract, Venue name, Author name, ...



Are LLMs aware of academic graphs?

🗋 You

What is the most cited paper in WWW 2017? Please list its title and authors.

ChatGPT

As of my last update in January 2022, I don't have the real-time citation information, but one of the highly cited papers from WWW 2017 is:

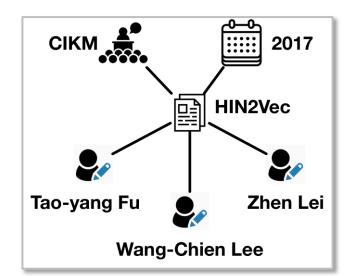
Title: "HIN2Vec: Explore Meta-paths in Heterogeneous Information Networks for Representation Learning"

Authors: Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, Edward Y. Chang

Please verify the latest citation counts and updates from reliable sources or academic databases for the most current information.

0000

ChatGPT 3.5, queried on January 23, 2024



HIN2Vec was published in CIKM 2017.

HIN2Vec was written by Tao-yang Fu, Wang-Chien Lee, and Zhen Lei.

Are LLMs aware of academic graphs?

What is the most cited paper in WWW 2017? Please list its title and authors.

As of January 2025, the most cited paper from the 26th International World Wide Web Conference (WWW 2017) is:

Title: "Attention Is All You Need"

Authors: Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin

This seminal paper introduced the Transformer architecture, which has become foundational in the field of natural language processing and has significantly influenced subsequent research and applications.

ChatGPT 40, queried on January 7, 2025

Transformer was published in NeurIPS 2017.

Are LLMs aware of academic graphs?

What is the most cited paper in WWW 2017? Please list its title and authors.

Identifying the most cited paper from the 2017 International World Wide Web Conference (WWW 2017) requires access to current citation data, which I cannot retrieve directly. However, based on available information, one of the highly influential papers from WWW 2017 is:

Title: "Inductive Representation Learning on Large Graphs"

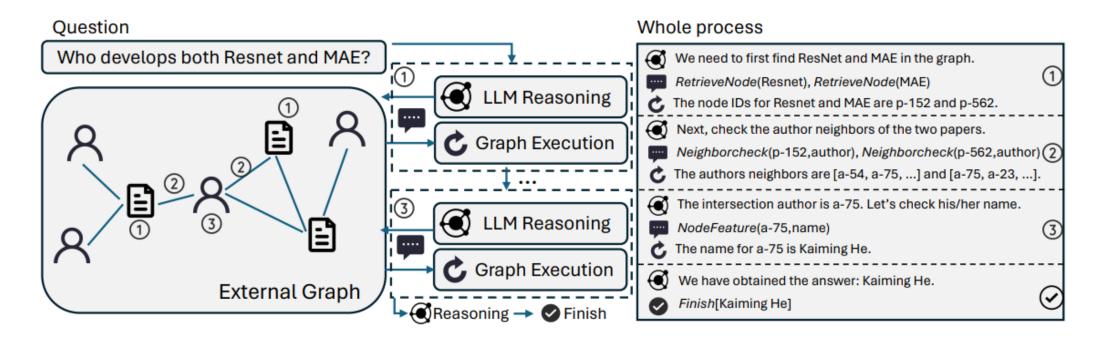
Authors: William L. Hamilton, Rex Ying, and Jure Leskovec

This paper introduces GraphSAGE, a framework for inductive representation learning on large graphs, which has been widely cited in subsequent research.

ChatGPT 40, queried on March 15, 2025

GraphSAGE was published in NeurIPS 2017.

Last Lecture: Graph Chain-of-Thought



	Model		Model Academic		E-commerce L		Literature H		Healthcare		Legal	
			GPT4score	EM	GPT4score	EM	GPT4score	EM	GPT4score	EM	GPT4score	
4 .5	LLaMA-2-13b	22.01	22.97	12.48	20.00	9.25	20.00	2.97	4.81	17.98	17.22	
raph tAG	Mixtral-8x7b	27.77	31.20	32.87	37.00	20.08	33.33	8.66	15.19	23.48	25.56	
ۍ م	GPT-3.5-turbo	18.45	26.98	17.52	28.00	14.94	24.17	8.69	14.07	18.66	22.22	
	GRAPH-COT	31.89	33.48	42.40	44.50	41.59	46.25	22.33	28.89	30.52	28.33	

Graph Chain-of-Thought: Augmenting Large Language Models by Reasoning on Graphs. ACL 2024 Findings.

Agenda

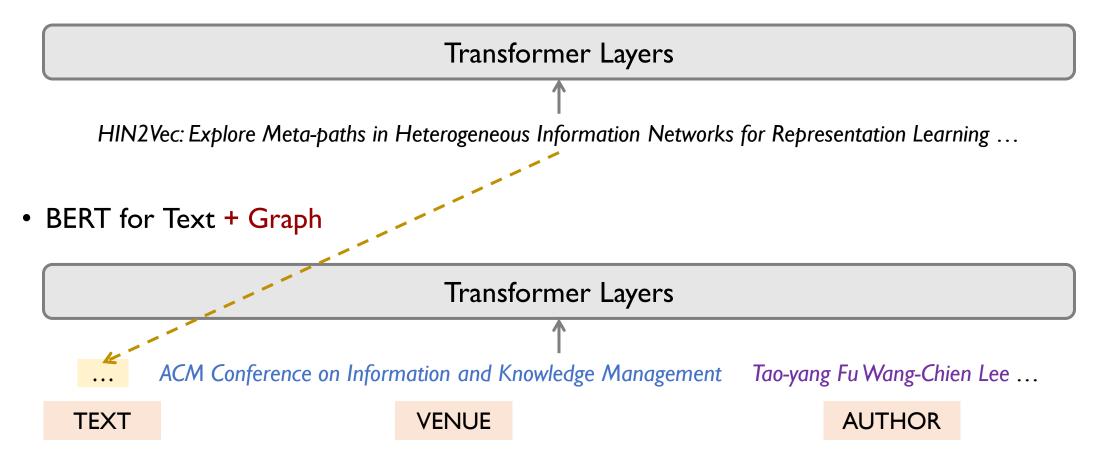
- Academic Graphs as Additional Input Features
 - OAG-BERT
 - LinkBERT
- Academic Graphs as Supervision
 - MICoL
 - GraphInst

Agenda

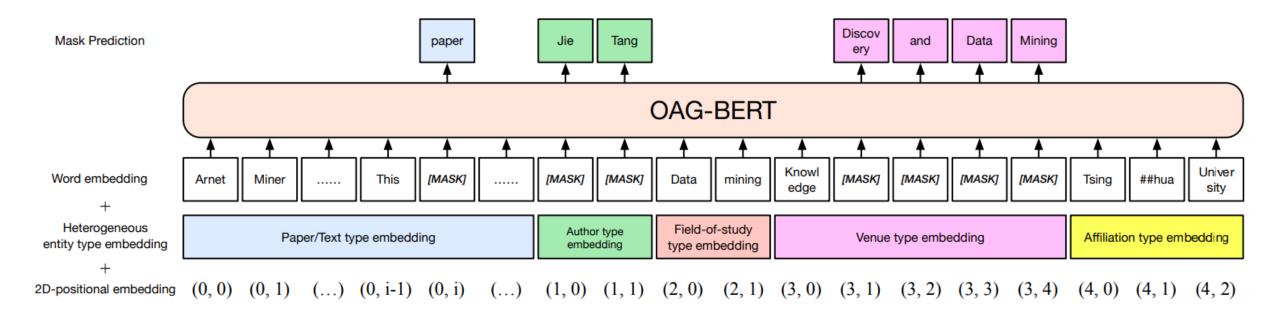
- Academic Graphs as Additional Input Features
 - OAG-BERT
 - LinkBERT
- Academic Graphs as Supervision
 - MICoL
 - GraphInst

How to sequentialize graph information?

• BERT for Text

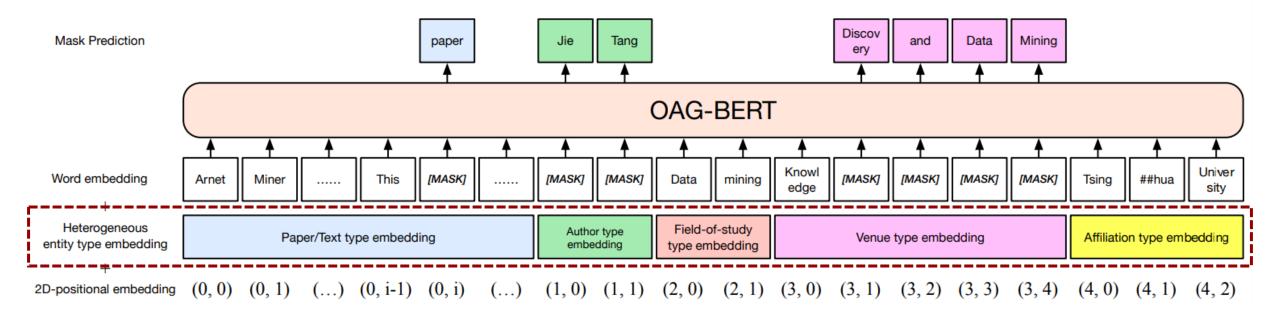


OAG-BERT: Overview



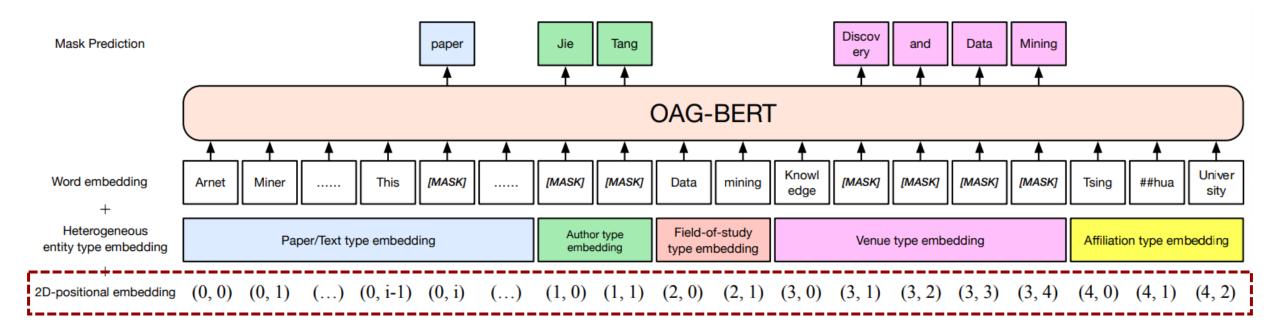
- Pre-train a new model for encoding an academic paper's text + graph information
- Append authors, fields-of-study, venue, and affiliation to paper text
- MLM only, no NSP

OAG-BERT: Heterogeneous Entity Type Embedding



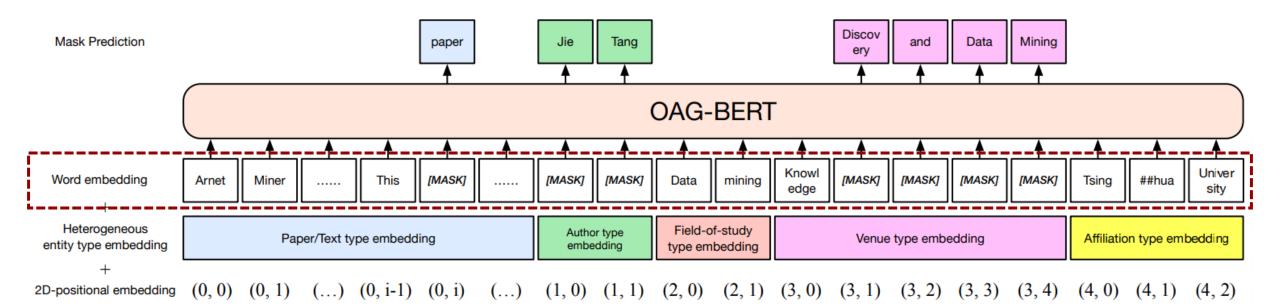
- Make the model aware of different types of input
- Analogous to segment embeddings in the original BERT

OAG-BERT: 2D-Positional Embedding



- Jointly model inter and intra-entity token orders
 - Further make aware of different types of input
- Final positional embedding = 1st positional embedding + 2nd positional embedding

OAG-BERT: Span-Aware Entity Masking



- Select a continuous span when performing MLM on graph signals
 - < 4 tokens: mask the entire entity
 - \geq 4 tokens: randomly mask a continuous span of 4-10 tokens
- Motivation: In downstream applications, we usually need to predict the entire entity.

More Details of OAG-BERT

- Stage 1: MLM on text only
 - Data: AMiner + PubMed
- Stage 2: MLM on text + graph
 - Data: OAG (aligning AMiner and MAG)
- Averaging all token embeddings (instead of using [CLS]) as the document embedding

https://github.com/THUDM/OAG-BERT

• Author Name Disambiguation

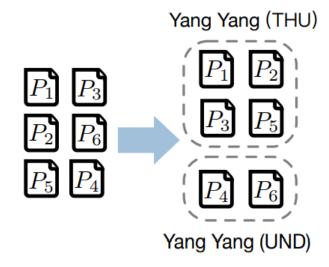


Table 1: The Macro Pairewise F1 scores for the author name disambiguation competition whoiswho-v1.

	Inputs	SciBERT	OAG-BERT
	title	0.3690	0.4120
Unaunomicod	+fos	0.4101	0.4643
Unsupervised	+venue	0.3603	0.4247
	+fos+venue	0.3903	0.4823
Supervised	Leader Board Top1	0.4900	

• Literature Retrieval

Table 2: Scientific Literature Retrieval evaluation on OAG-QA (Top-100) between SciBERT and OAG-BERT.

	SciBERT	OAG-BERT
Geometry	0.097	0.147
Math. & Stats.	0.099	0.166
Algebra	0.071	0.069
Calculus	0.091	0.160
Number theory	0.067	0.085
Linear algebra	0.111	0.160
Astrophysics	0.041	0.072
Quantum mechanics	0.047	0.080
Classical mechanics	0.085	0.197
Chemistry	0.181	0.216
Biochemistry	0.146	0.319
Health care	0.041	0.262
Natural science	0.101	0.277
Algorithm	0.084	0.209
Neuroscience	0.054	0.120
Computer vision	0.035	0.205
Data mining	0.082	0.161
Deep learning	0.044	0.138
Machine learning	0.085	0.177
NLP	0.05	0.160
Economics	0.055	0.151
Average	0.079	0.168

Link Prediction

Table 3: Paper recommendation and User Activity Prediction (Co-View and Co-Read) on Scidocs [8].

Models	Paper	Rec.	Co-	View	Co-Read		
	nDCG	P@1	MAP	nDCG	MAP	nDCG	
Random doc2vec Sent-BERT SciBERT OAG-BERT	51.3 51.7 51.6 52.1 52.6	16.8 16.9 17.1 17.9 18.6	25.2 67.8 68.2 50.7 74.7	51.6 82.9 83.3 73.1 86.3	25.6 64.9 64.8 47.7 71.4	51.9 81.6 81.3 71.1 84.7	

Still significantly underperforms SPECTER and SciNCL

• Paper Title Generation

Table 7: Upper: case study in OAG-BERT generated titles and original title. **Lower:** Online testing result from 660 random human views on 50 pairs of OAG-BERT generated and original titles.

	OAG-BERT Ge	enerated v.s. O	riginal				
OAG-BERT	OAG-LM: A Unified Backbone for Academic Knowledge Services OAG-LM: A Unified Backbone Language Model for Academic Knowledge Services						
AMiner	Networks	-	0	ning Academic Social emic Social Networks			
ResNet	Deep Residual Networks for Visual Recognition : A Comparison of Deep and VGG Networks Deep Residual Networks for Image Recognition						
SciBERT			age Model for S age Model for S				
Method		Total	Select	Selection Rate			
OAG-BERT	Generated	330	157	47.6%			
Original		330	163	52.4%			

Metadata Prediction



• Enumerate the length (i.e., number of [MASK] tokens) and pick the answer with the highest conditional probability.

Metadata Prediction

Mathad	Paper Ta	agging	Ven	ue	Affiliation		
Method	Hit@1	MRR	Hit@1	MRR	Hit@1	MRR	
SciBERT	19.93%	0.37	9.87%	0.22	6.93%	0.19	
+prompt	29.59%	0.47	10.03%	0.21	8.00%	0.20	
+abstract	25.66%	0.43	18.00%	0.32	10.33%	0.22	
+both	35.33%	0.52	9.83%	0.22	12.40%	0.25	
OAG-BERT	34.36%	0.51	21.00%	0.37	11.03%	0.24	
+prompt	37.33%	0.55	22.67%	0.39	11.77%	0.25	
+abstract	49.59%	0.67	39.00 %	0.57	21.67%	0.38	
+both	49.51%	0.67	38.47%	0.57	21.53%	0.38	

Table 5: The results for zero-shot inference tasks.

Take-Away Messages

- Performing MLM jointly on text and graph signals (i.e., metadata neighbors) of a paper enhances the representation learning ability of the model.
 - The heterogeneous entity type embedding and the 2D-positional embedding make the model aware of different types of input.
- The model can predict metadata of a paper via zero-shot prompting.
 - But we need to enumerate the length of the metadata.
- Limitations:
 - Authors are intuitively semantic-indicative, but author names are practically hard to deal with.
 - Treat each author name as one token: How to deal with new authors? Explosion of the vocabulary size?
 - Tokenize the author names: Two authors sharing the same first/last name do not necessarily work on the same topic.

Agenda

• Academic Graphs as Additional Input Features

• OAG-BERT

• LinkBERT

- Academic Graphs as Supervision
 - MICoL
 - GraphInst

References/Citation Links

- Available in scientific papers, Wikipedia articles, webpages,
- We have seen models using citation links as supervision (e.g., SPECTER and SciNCL).
- How to use them as additional features?

. . .

 Not considered in OAG-BERT An example where references benefit question answering

P

Document

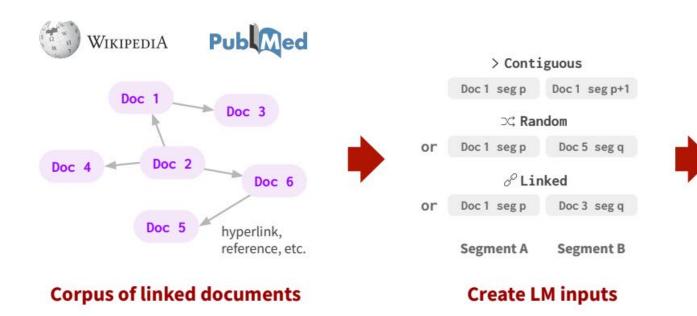
[Tidal Basin, Washington D.C.] The Tidal Basin is a man-made reservoir located between the Potomac River and the Washington Channel in Washington, D.C. It is part of West Potomac Park, is near the National Mall and is a focal point of the National Cherry Blossom Festival held each spring. The Jefferson Memorial, the Martin Luther King Jr. Memorial, the Franklin Delano Roosevelt Memorial, and the George Mason Memorial are situated adjacent to the Tidal Basin.

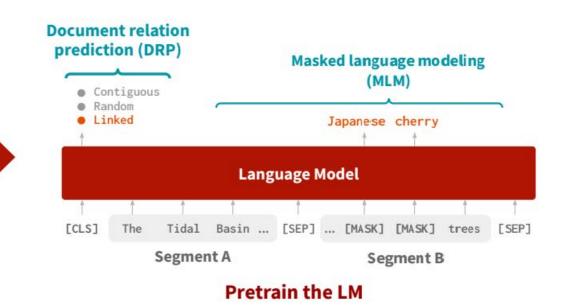
Linked document (e.g. hyperlink, reference)

[The National Cherry Blossom Festival] ... It is a spring celebration commemorating the March 27, 1912, gift of Japanese cherry trees from Mayor of Tokyo City Yukio Ozaki to the city of Washington, D.C. Mayor Ozaki gifted the trees to enhance the growing friendship between the United States and Japan. ... Of the initial gift of 12 varieties of 3,020 trees, the Yoshino Cherry (70% of total) and Kwanzan Cherry (13% of total) now dominate....

LinkBERT: A Cross-Encoder Architecture

- BERT A pair of sentences (next or random). Simultaneously perform MLM and NSP (binary classification).
- LinkBERT A pair of sentences (next, random, or linked). Simultaneously perform MLM and NSP (three-class classification)



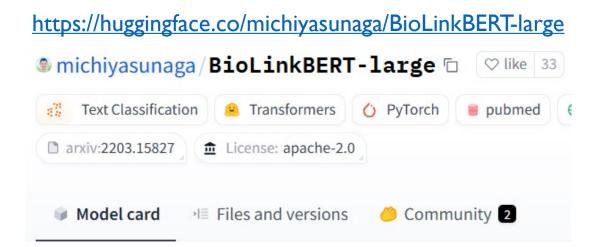


LinkBERT: Pretraining Language Models with Document Links. ACL 2022.

More Details of LinkBERT & BioLinkBERT

- LinkBERT: continue pre-training BERT-Tiny/Base/Large (4.4M/110M/340M parameters) using Wikipedia reference links
 - Consistently outperform BERT-Tiny/Base/Large on various extractive QA datasets
- BioLinkBERT: pre-training a base/large-size BERT model (110M/340M parameters) from scratch using PubMed reference links

https://huggingface	e.co/michiyasunaga/LinkBERT-large
Smichiyasunaga /	inkBERT-large 🗇 🖾 🖓 like 12
Text Classification	😕 Transformers 🍎 PyTorch 📒 wikipedia
Inference Endpoints	arxiv:2203.15827 License: apache-2.0
Model card → I	Files and versions 🛛 🏉 Community 🔳



Performance of BioLinkBERT: Multi-Choice QA

MedQA-USMLE

Methods	Acc. (%)
BioBERT _{large} (Lee et al., 2020)	36.7
QAGNN (Yasunaga et al., 2021)	38.0
GreaseLM (Zhang et al., 2022)	38.5
PubmedBERT _{base} (Gu et al., 2020)	38.1
BioLinkBERT _{base} (Ours)	40.0
BioLinkBERT _{large} (Ours)	44.6

MedQA-USMLE example

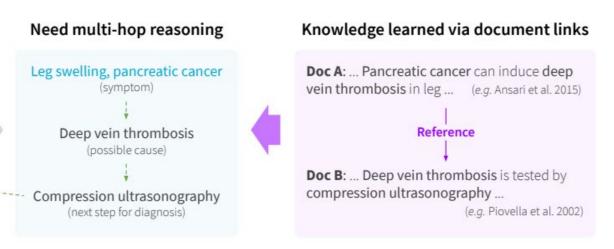
Three days after undergoing a laparoscopic Whipple's procedure, a 43-year-old woman has swelling of her right leg. ... She was diagnosed with pancreatic cancer 1 month ago. ... Her temperature is 38°C (100.4° F), pulse is 90/min, and blood pressure is 118/78 mm Hg. Examination shows mild swelling of the right thigh to the ankle; there is no erythema or pitting edema. ... Which of the following is the most appropriate next step in management?

(C) D-dimer level

(A) CT pulmonary angiography (B) Compression ultrasonography (D) 2 sets of blood cultures

MMLU-Professional-Medicine

Methods	Acc. (%)
GPT-3 (175B params) (Brown et al., 2020) UnifiedQA (11B params) (Khashabi et al., 2020)	38.7 43.2
BioLinkBERT _{large} (Ours)	50.7



Performance of BioLinkBERT: BLURB Benchmark

	PubMed- BERT _{base}	BioLink- BERT _{base}	BioLink- BERT _{large}
Named entity recognition			
BC5-chem (Li et al., 2016)	93.33	93.75	94.04
BC5-disease (Li et al., 2016)	85.62	86.10	86.39
NCBI-disease (Doğan et al., 2014)	87.82	88.18	88.76
BC2GM (Smith et al., 2008)	84.52	84.90	85.18
JNLPBA (Kim et al., 2004)	80.06	79.03	80.06
PICO extraction			
EBM PICO (Nye et al., 2018)	73.38	73.97	74.19
Relation extraction			
ChemProt (Krallinger et al., 2017)	77.24	77.57	79.98
DDI (Herrero-Zazo et al., 2013)	82.36	82.72	83.35
GAD (Bravo et al., 2015)	82.34	84.39	84.90
Sentence similarity			
BIOSSES (Soğancıoğlu et al., 2017)	92.30	93.25	93.63
Document classification			
HoC (Baker et al., 2016)	82.32	84.35	84.87
Question answering			
PubMedQA (Jin et al., 2019)	55.84	70.20	72.18
BioASQ (Nentidis et al., 2019)	87.56	91.43	94.82
BLURB score	81.10	83.39	84.30

https://microsoft.github.io/BLURB/leaderboard.html

BLURB

The Overall score is calculated as the macro-average performance over tas

Show 100 ✓ entries

Rank	Model	BLURB Score (Macro Avg.)
1	BioLinkBERT-Large — Stanford	84.30
2	BioM-ALBERT-xxlarge-PMC — University of Delaware	84.10
3	BioM-ELECTRA-Large — University of Delaware	83.81

Take-Away Messages

- Adding a sentence from a reference paper as context helps capture knowledge and semantics not reflected in the local context within each paper.
- Such a cross-encoder pre-training paradigm consistently benefits QA tasks.
 - Why?
 - Extractive QA Input: Context [SEP] Question; Goal: Find information (i.e., a span of tokens) in the context that is relevant to the question
 - LinkBERT pre-training Input: Paper 1 [SEP] Paper 2; Goal: Judge if there is information in Paper 1 that is relevant to Paper 2 (which may imply that Paper 1 cites Paper 2)
- Limitation:
 - LinkBERT pre-training models only one citation edge every time. Is it possible to include all references simultaneously as additional features?
 - MATCH: Metadata-Aware Text Classification in a Large Hierarchy. WWW 2021.
 - How to further include other graph signals (e.g., author, venue, etc.)?

Agenda

- Academic Graphs as Additional Input Features
 - OAG-BERT
 - LinkBERT
- Academic Graphs as Supervision
 - MICoL
 - GraphInst

Extremely Fine-Grained Scientific Paper Classification

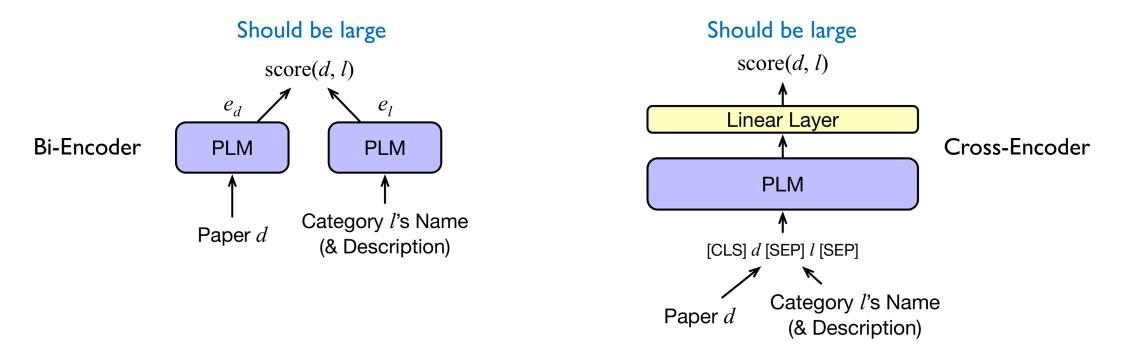
- MAG has 740K+ categories.
- The Medical Subject Headings (MeSH) for indexing PubMed papers contain 30K+ categories.
- Each paper can be relevant to more than one category (5-15 categories for most papers).

l Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study.

• Relevant categories: Betacoronavirus, Cardiovascular Diseases, Comorbidity, Coronavirus Infections, Fibrin Fibrinogen Degradation Products, Mortality, Pandemics, Patient Isolation, Pneumonia, ...

If we could have some training data ...

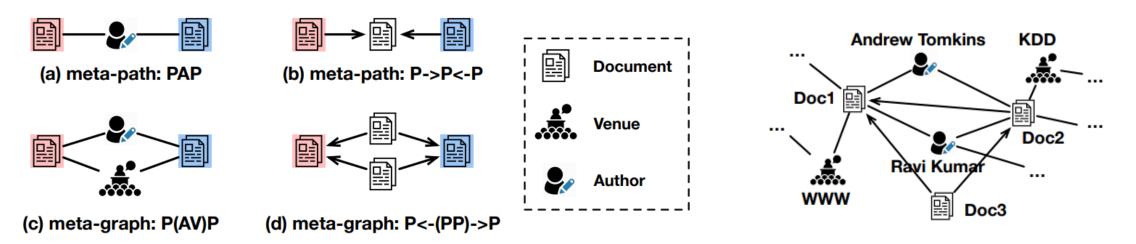
- We could use relevant (paper, category) pairs to fine-tune a pre-trained language model.
- Both **Bi-Encoder** and **Cross-Encoder** are applicable.



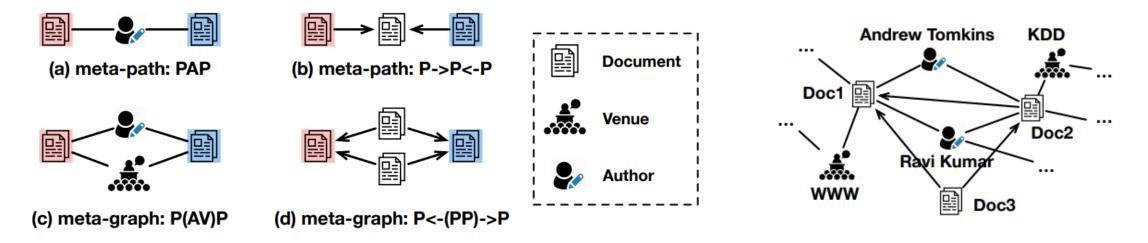
- However, human-annotated training samples are NOT available in many cases!
 - We are asking annotators to find ~10 relevant categories from ~100,000 candidates!

Using Academic Graph Signals to Replace Annotations

- If relevant (paper, category) pairs are not available, can we automatically create relevant (paper, paper) pairs?
 - Two papers sharing the same author(s) are assumed to be similar.
 - Two papers sharing the same reference(s) are assumed to be similar.
 - ...
- The notion of meta-paths and meta-graphs



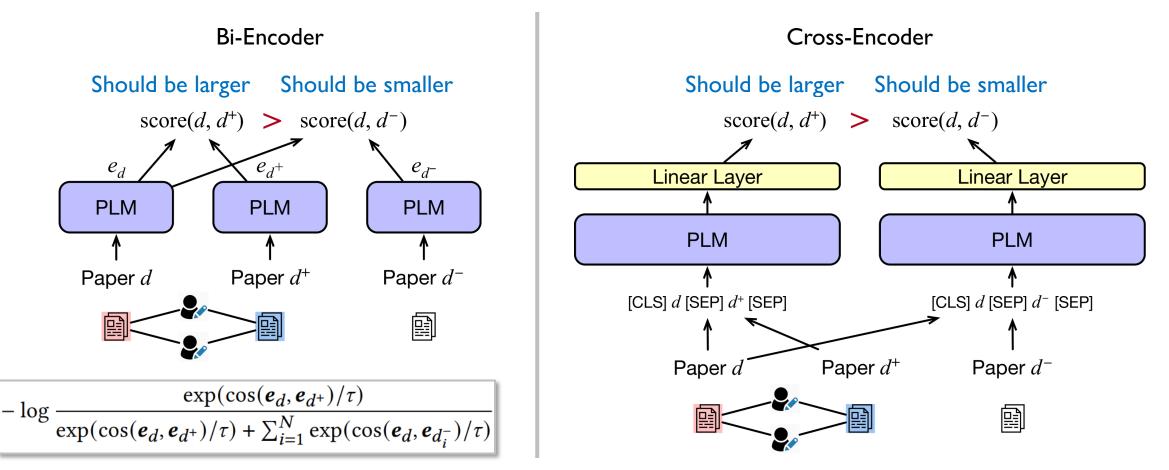
Using Academic Graph Signals to Replace Annotations



- Examples:
 - Doc1 and Doc2 are connected via the meta-path PAP.
 - Doc1 and Doc2 are NOT connected via the meta-path PVP.
 - Doc1 and Doc2 are connected via the meta-graph P(AA)P.
- Why do need to consider meta-graphs?
 - One author may work on many different topics, but when two authors collaborate, the scope usually becomes much narrower.

Graph-Induced Contrastive Learning

• Two papers connected via a certain meta-path/meta-graph should be more similar than two randomly selected papers.



Metadata-Induced Contrastive Learning for Zero-Shot Multi-Label Text Classification. WWW 2022.

Performance of MICoL

Table 2: P@k and NDCG@k scores of compared algorithms on MAG-CS and PubMed. Bold: the highest score of zero-shot approaches. *: MICoL (Cross-Encoder, $P \rightarrow P \leftarrow P$) is significantly better than this algorithm with p-value < 0.05. **: MICoL (Cross-Encoder, $P \rightarrow P \leftarrow P$) is significantly better than this algorithm with p-value < 0.01.

	Algorithm	MAG-CS [49]					PubMed [24]				
	Algorithm	P@1	P@3	P@5	NDCG@3	NDCG@5	P@1	P@3	P@5	NDCG@3	NDCG@5
	Doc2Vec [31]	0.5697**	0.4613**	0.3814**	0.5043**	0.4719**	0.3888**	0.3283**	0.2859**	0.3463**	0.3252**
	SciBERT [2]	0.6440**	0.5030**	0.4011**	0.5545**	0.5061**	0.4427**	0.3572**	0.3031**	0.3809**	0.3510**
	ZeroShot-Entail [61]	0.6649**	0.5003**	0.3959**	0.5570**	0.5057**	0.5275**	0.4021	0.3299	0.4352	0.3913
t	SPECTER [8]	0.7107**	0.5381**	0.4184**	0.5979**	0.5365**	0.5286**	0.3923**	0.3181**	0.4273**	0.3815**
-shot	EDA [53]	0.6442**	0.4939**	0.3948**	0.5471**	0.5000**	0.4919	0.3754*	0.3101*	0.4058*	0.3667*
Zero-	UDA [57]	0.6291**	0.4848**	0.3897**	0.5362**	0.4918**	0.4795**	0.3696**	0.3067**	0.3986**	0.3614**
Z	MICoL (Bi-Encoder, $P \rightarrow P \leftarrow P$)	0.7062*	0.5369*	0.4184^{*}	0.5960*	0.5355*	0.5124**	0.3869*	0.3172*	0.4196*	0.3774*
	MICoL (Bi-Encoder, $P \leftarrow (PP) \rightarrow P$)	0.7050*	0.5344*	0.4161*	0.5937*	0.5331*	0.5198**	0.3876*	0.3172*	0.4215*	0.3786*
	MICoL (Cross-Encoder, $P \rightarrow P \leftarrow P$)	0.7177	0.5444	0.4219	0.6048	0.5415	0.5412	0.4036	0.3257	0.4391	0.3906
	MICoL (Cross-Encoder, $P \leftarrow (PP) \rightarrow P$)	0.7061	0.5376	0.4187	0.5964	0.5357	0.5218	0.3911	0.3172*	0.4249	0.3794

- Cross-Encoder > Bi-Encoder
- Meta-paths > One-hop citation information (SPECTER)
- Graph-induced contrastive learning > Text-only contrastive learning (EDA & UDA)

Effect of Meta-Paths/Meta-Graphs

Algorithm			MAG-CS [49]		PubMed [24]						
Algorithm	P@1	P@3	P@5	NDCG@3	NDCG@5	P@1	P@3	P@5	NDCG@3	NDCG@5		
Unfine-tuned SciBERT	0.6599**	0.5117**	0.4056**	0.5651**	0.5136**	0.4371**	0.3544**	0.3014**	0.3775**	0.3485**		
MICoL (Bi-Encoder, PAP)	0.6877**	0.5285**	0.4143**	0.5852**	0.5280**	0.4974**	0.3818**	0.3154*	0.4122**	0.3727**		
MICoL (Bi-Encoder, PVP)	0.6589**	0.5123**	0.4063**	0.5656**	0.5145**	0.4440**	0.3507**	0.2966**	0.3761**	0.3458**		
MICoL (Bi-Encoder, $P \rightarrow P$)	0.7094	0.5391	0.4190	0.5982	0.5367	0.5200*	0.3903*	0.3195	0.4240*	0.3808*		
MICoL (Bi-Encoder, $P \leftarrow P$)	0.7095*	0.5374*	0.4178*	0.5970*	0.5356*	0.5195**	0.3905*	0.3192	0.4240^{*}	0.3806*		
MICoL (Bi-Encoder, $P \rightarrow P \leftarrow P$)	0.7062*	0.5369*	0.4184*	0.5960*	0.5355*	0.5124**	0.3869*	0.3172*	0.4196*	0.3774*		
MICoL (Bi-Encoder, $P \leftarrow P \rightarrow P$)	0.7039*	0.5379*	0.4187^{*}	0.5963*	0.5356*	0.5174**	0.3886*	0.3187*	0.4220*	0.3795*		
MICoL (Bi-Encoder, $P(AA)P$)	0.6873**	0.5272**	0.4130**	0.5840**	0.5269**	0.4963**	0.3794**	0.3139**	0.4101**	0.3711**		
MICoL (Bi-Encoder, $P(AV)P$)	0.6832**	0.5263**	0.4135**	0.5823**	0.5263**	0.4894**	0.3743**	0.3099**	0.4045**	0.3664**		
MICoL (Bi-Encoder, $P \rightarrow (PP) \leftarrow P$)	0.7015**	0.5334**	0.4160**	0.5920**	0.5322**	0.5163**	0.3879*	0.3172*	0.4211*	0.3781*		
MICoL (Bi-Encoder, $P \leftarrow (PP) \rightarrow P$)	0.7050*	0.5344*	0.4161*	0.5937*	0.5331*	0.5198**	0.3876*	0.3172*	0.4215*	0.3786*		
MICoL (Cross-Encoder, PAP)	0.7034*	0.5355	0.4168	0.5943	0.5337	0.5212**	0.3921*	0.3207	0.4255*	0.3818*		
MICoL (Cross-Encoder, PVP)	0.6720*	0.5203*	0.4103*	0.5750*	0.5210*	0.4668**	0.3633**	0.3051**	0.3908**	0.3574**		
MICoL (Cross-Encoder, $P \rightarrow P$)	0.7033*	0.5391	0.4201	0.5971*	0.5365*	0.5266	0.3946	0.3207	0.4286	0.3830		
MICoL (Cross-Encoder, $P \leftarrow P$)	0.7169	0.5430	0.4214	0.6033	0.5406	0.5265	0.3924	0.3186	0.4268	0.3811		
MICoL (Cross-Encoder, $P \rightarrow P \leftarrow P$)	0.7177	0.5444	0.4219	0.6048	0.5415	0.5412	0.4036	0.3257	0.4391	0.3906		
MICoL (Cross-Encoder, $P \leftarrow P \rightarrow P$)	0.7045	0.5356*	0.4168*	0.5944*	0.5336*	0.5243*	0.3932*	0.3190*	0.4271*	0.3814*		
MICoL (Cross-Encoder, $P(AA)P$)	0.7028	0.5351	0.4171	0.5939	0.5338	0.5290*	0.3937	0.3201	0.4285*	0.3830		
MICoL (Cross-Encoder, $P(AV)P$)	0.7024*	0.5354*	0.4177	0.5940*	0.5343*	0.5164**	0.3897*	0.3195*	0.4225*	0.3797*		
MICoL (Cross-Encoder, $P \rightarrow (PP) \leftarrow P$)	0.7076*	0.5379*	0.4188	0.5971*	0.5363*	0.5186	0.3924*	0.3184*	0.4254^{*}	0.3800*		
MICoL (Cross-Encoder, $P \leftarrow (PP) \rightarrow P$)	0.7061	0.5376	0.4187	0.5964	0.5357	0.5218	0.3911	0.3172*	0.4249	0.3794		

• All examined meta-paths/meta-graphs are beneficial, except PVP.

Performance on Tail Labels

- New evaluation metrics: Propensity-Scored P/NDCG@k (a.k.a., PSP@k and PSN@k)
- If you can predict an infrequent label (e.g., "Lagrangian SVM") correctly, you will get a higher "reward" than you predict a frequent label (e.g., "Computer Science").

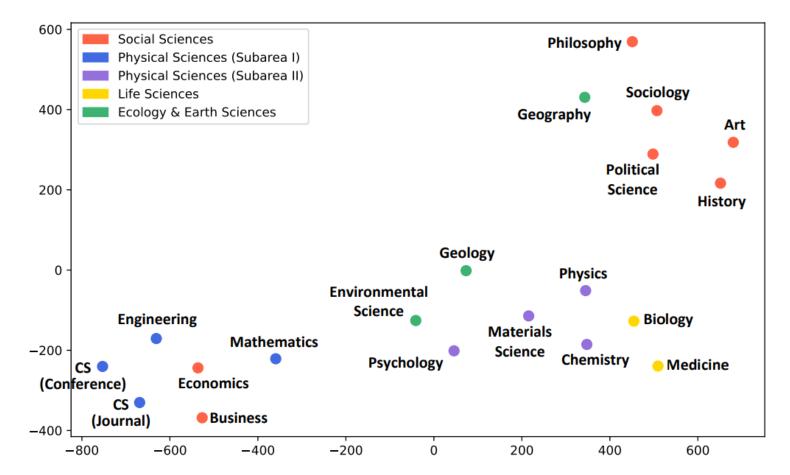
	Algorithm	MAG-CS [49]						PubMed [24]					
	Aigorithin	PSP@1	PSP@3	PSP@5	PSN@3	PSN@5	PSP@1 P@1	PSP@1	PSP@3	PSP@5	PSN@3	PSN@5	PSP@1 P@1
shot	Doc2Vec [31]	0.4287**	0.4623**	0.4656**	0.4450**	0.4425**	0.75	0.2717**	0.2948**	0.3029**	0.2856**	0.2879**	0.70
	SciBERT [2]	0.4668**	0.4958**	0.4843**	0.4788**	0.4667**	0.72	0.3149**	0.3231**	0.3221**	0.3174**	0.3131**	0.71
	ZeroShot-Entail [61]	0.4796**	0.4892**	0.4759**	0.4777**	0.4644**	0.72	0.3617**	0.3498**	0.3389**	0.3492**	0.3378**	0.69
	SPECTER [8]	0.5304	0.5334*	0.5059*	0.5223	0.4988*	0.75	0.3907**	0.3638**	0.3442**	0.3666**	0.3489**	0.74
	EDA [53]	0.4916**	0.4968**	0.4821**	0.4859**	0.4708**	0.76	0.3572*	0.3451*	0.3334*	0.3442*	0.3322*	0.73
ero-	UDA [57]	0.4850**	0.4907**	0.4771**	0.4797**	0.4654**	0.77	0.3547**	0.3423**	0.3311**	0.3416**	0.3298**	0.74
Ze	MICoL (Bi-Encoder, $P \rightarrow P \leftarrow P$)	0.5176	0.5311	0.5065	0.5175	0.4963	0.73	0.3676**	0.3559**	0.3423*	0.3550**	0.3418**	0.72
	MICoL (Bi-Encoder, $P \leftarrow (PP) \rightarrow P$)	0.5160	0.5281	0.5037	0.5150	0.4940	0.73	0.3780**	0.3589*	0.3423*	0.3597**	0.3450**	0.73
	MICoL (Cross-Encoder, $P \rightarrow P \leftarrow P$)	0.5375	0.5415	0.5118	0.5302	0.5052	0.75	0.4105	0.3807	0.3558	0.3841	0.3625	0.76
	MICoL (Cross-Encoder, $P \leftarrow (PP) \rightarrow P$)	0.5326	0.5363	0.5087	0.5249	0.5013	0.75	0.3871	0.3664	0.3462	0.3677	0.3496	0.74

Take-Away Messages

- Given an academic graph, we can go beyond one-hop citation links to create positive (paper, paper) pairs for contrastive learning.
- For the fine-grained paper classification task, using venue information as supervision is too vague.
 - However, using venue as additional features is consistently helpful!
 - The Effect of Metadata on Scientific Literature Tagging: A Cross-Field Cross-Model Study. WWW 2023.
- Limitations
 - Rely on human knowledge to select a good meta-path/meta-graph. How do we know which meta-path/meta-graph is the most helpful?

Which type of metadata is the most helpful?

- Is the contribution of venues, authors, and references to paper classification consistent across different fields?
 - NO! BUT the effects of metadata tend to be similar in two similar fields.
 - The experience of using metadata in one field can be extrapolated to a similar field.



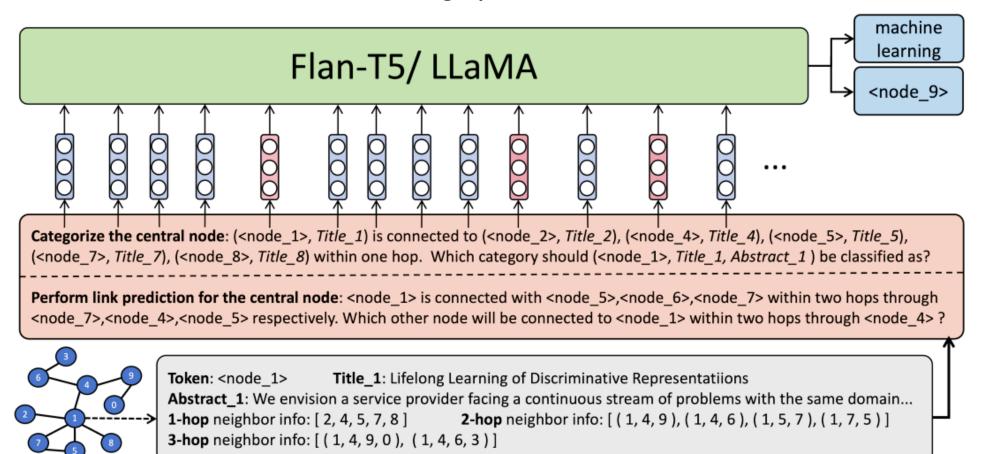
The Effect of Metadata on Scientific Literature Tagging: A Cross-Field Cross-Model Study. WWW 2023.

Agenda

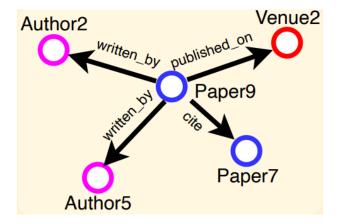
- Academic Graphs as Additional Input Features
 - OAG-BERT
 - LinkBERT
- Academic Graphs as Supervision
 - MICoL
 - GraphInst

Instruction Tuning LLMs on Graphs

• How to teach an LLM about an unseen graph?



How to represent a graph?



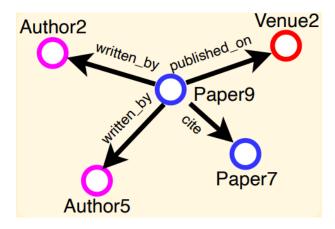
• Natural Language

• Paper9 is written by Author2 and Author5. Paper9 is published on Venue 2. Paper9 cites Paper 7 and ...

• JSON

- {"Paper9": {"written_by": ["Author2", "Author5"], "published_on": "Venue2", "cite": ["Paper7", ...]}}
- DOT (Code)
 - digraph G {
 Paper9 -> {Author2, Author5} [label="written_by"];
 Paper9 -> {Venue2} [label="published_on"];
 Paper9 -> {Paper7, ...} [label="cite"]

How should the LLM generalize?



- Seen Question
 - Q: What are the written_by neighbors of Paper9?
 - A: Author2, Author5
- Unseen Subtask
 - Q: What is the published_on neighbor of Paper9?
 - A: Venue2
- Unseen Answer Type
 - Q: How many written_by neighbors does Paper9 have?
 - A: 2
- Unseen Domain (Given a new graph, e.g., medical KG)
 - Q: What are the caused_by neighbors of Disease25?
 - A: Chemical6, Chemical10

Examined Answer Types, Tasks, and Subtasks

Answer Type	Task	Description	Answer Type	Task	Description
Node	Find neighbors Nodes shared	$\{v \in N(u) \phi_E(u, v) \in T'_E\}$	Bool	Linked by edge	$\{\phi_E(u,v)\in T'_E\}$
ivoue	neighbors	$ \{v \forall t_e \in T'_E, \exists w \in V, \phi_E(u,w) = \phi_E(v,w) = t_e\} $		Has path	$\{P(u,v)\neq\emptyset\}$
	N-hop neighbors	$\{v \phi_V(v)\in T'_V, d(u,v) <= c\}$			
			Path	Find paths	$\{P' \subseteq P(u,v) len(p_{u,v}) = c, p_{u,v} \in P'\}$
Pair	Find pairs	$\{(v_1, v_2) \phi(v_1, v_2) \in T'_E, u \in \{v_1, v_2\}\}$		Shortest path	$ \{p'_{u,v} \in P(u,v) len(p'_{u,v}) = \\ \min(len(p_{u,v}) p_{u,v} \in P(u,v)) \} $
	Pairs shared neighbors	$ \begin{cases} (v_1, v_2) \exists W \subset V : \forall w \in \\ W, \phi_E(v_1, w) = \phi_E(v_2, w) \in \end{cases} $	Graph	Ego graph	$ \begin{vmatrix} \{(v_1, v_2) \in E d(u, v_1) \\ c, d(u, v_2) <= c \end{vmatrix} $
		$T'_E \land W = c \}$	Link Prediction	Link Prediction	$(E',T'_E) \to \{0,1\}$
Count	Degree count	$ig \{ V' V' \subseteq N(u) : \forall v \in V', \phi_E(u, v) \in T'_E \}$			
	Node count within N-hop	$\{ V' V' \subset V : \forall v \in V', d(u,v) <= c\}$			
	Path count	$\{ P' \subseteq P(u,v) \forall p_{u,v} \in P', len(p_{u,v}) = c\}$			

• Unseen subtasks: trained to find author neighbors \rightarrow tested to find venue neighbors trained to count 1-hop neighbors \rightarrow tested to count 2-hop neighbors

Examined Answer Types, Tasks, and Subtasks

Answer Type	Task	Description	Answer Type	Task	Description
Node	Find neighbors	$\{v \in N(u) \phi_E(u, v) \in T'_E\}$	Bool	Linked by edge	$\{\phi_E(u,v)\in T'_E\}$
Troat	neighbors	$ \{ v \forall t_e \in T'_E, \exists w \in V, \phi_E(u, w) = \phi_E(v, w) = t_e \} $	\longrightarrow	Has path	$\{P(u,v)\neq\emptyset\}$
	N-hop neighbors	$\{v \phi_V(v) \in T'_V, d(u, v) <= c\}$			
			Path	Find paths	$\{P' \subseteq P(u,v) len(p_{u,v}) = c, p_{u,v} \in P'\}$
Pair	Find pairs	$\{(v_1, v_2) \phi(v_1, v_2) \in T'_E, u \in \{v_1, v_2\}\}$		Shortest path	$ \{p'_{u,v} \in P(u,v) len(p'_{u,v}) = \\ \min(len(p_{u,v}) p_{u,v} \in P(u,v)) \} $
	Pairs shared neighbors	$ \begin{cases} (v_1, v_2) \exists W \subset V : \forall w \in \\ W, \phi_E(v_1, w) = \phi_E(v_2, w) \in \end{cases} $	Graph	Ego graph	$ \begin{array}{c c} \{(v_1, v_2) \in E d(u, v_1) \\ c, d(u, v_2) <= c \} \end{array} \in E d(u, v_1) \\ \end{array} < = $
		$T'_E \wedge W = c \}$	Link Prediction	Link Prediction	$(E',T'_E) \to \{0,1\}$
Count	Degree count	$\{ V' V' \subseteq N(u): \forall v \in V', \phi_E(u,v) \in T'_E\}$			
	Node count within N-hop	$\{ V' V' \subset V : \forall v \in V', d(u,v) <= c\}$			
	Path count	$\{ P' \subseteq P(u,v) \forall p_{u,v} \in P', len(p_{u,v}) = c\}$			

Unseen answer types: trained to find author neighbors (answer type: node) → tested to
predict if two papers are connected via paths (answer type: bool)

Datasets and Models

- Datasets
 - MAPLE [1] Node: paper, author, venue
 - Amazon [2] Node: product, brand, category
- Models (instruction/chat versions)
 - Llama-2 7B
 - Mistral 7B
 - Gemma 7B

https://github.com/yuzhimanhua/MAPLE

TREADME License										
Dataset Statistics										
Folder	Field	#Papers	#Labels	#Venues	#Authors	#References				
Art	Art	58,373	1,990	98	54,802	115,343				
Philosophy	Philosophy	59,296	3,758	98	36,619	198,010				
Geography	Geography	73,883	3,285	98	157,423	884,632				
Business	Business	84,858	2,392	97	100,525	685,034				
Sociology	Sociology	90,208	1,935	98	85,793	842,561				
History	History	113,147	2,689	99	84,529	284,739				
Political_Science	Political Science	115,291	4,990	98	93,393	480,136				
Environmental_Science	Environmental Science	123,945	694	100	265,728	1,217,268				
Economics	Economics	178,670	5,205	97	135,247	1,042,253				

[1] The Effect of Metadata on Scientific Literature Tagging: A Cross-Field Cross-Model Study. WWW 2023.
 [2] Justifying Recommendations using Distantly-Labeled Reviews and Fine-Grained Aspects. EMNLP 2019.

Performance of Graph Instruction Tuning

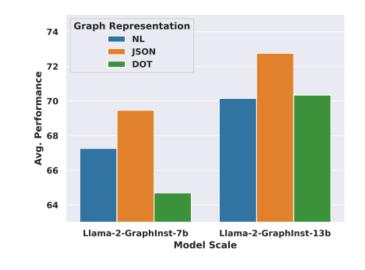
		Amazon							Maple							
	Node	Pair	Count	Bool	Path	Graph	LP	AVG	Node	Pair	Count	Bool	Path	Graph	LP	AVG
								Base	lines							
Llama-2-chat _{NL} Llama-2-chat _{JSON} Llama-2-chat _{DOT}	1.97 2.16 2.48	2.08 2.04 1.66	0.00 0.00 0.00	62.83 62.83 62.83		10.98 7.78 12.78	41.79	12.91 11.48 11.78	4.12	3.26 1.90 2.34	0.16 0.00 0.00	<u>58.91</u> <u>58.91</u> <u>58.91</u>	8.32		47.33	14.56 12.98 13.36
Mistral-Inst _{NL} Mistral-Inst _{JSON} Mistral-Inst _{DOT}	0.01 2.91 1.65	3.98 8.38 5.28	12.89 12.43 8.00	37.55 37.30 37.17	12.29	7.27 8.86 12.50	58.21	13.84 14.75 14.02	4.24	5.81 10.81 4.85	14.04 14.45 12.41	41.09	9.74	7.74	52.67	15.04 15.77 15.74
Gemma-Inst _{NL} Gemma-Inst _{JSON} Gemma-Inst _{DOT}	15.50	25.19 26.54 35.91		65.14		28.85 29.45 37.69	36.00	24.74	8.51	26.45	8.42	65.61		23.03 22.19 36.98	45.59	23.50
								Finet	uned							
Llama-2-GraphInst _{NL} Llama-2-GraphInst _{JSON} Llama-2-GraphInst _{DOT}	80.20	68.49	46.48	96.48	52.75	65.39	85.02	69.46	75.33	68.42	46.62	98.11	55.21	77.69 80.06 74.83	64.42	68.30
Mistral-GraphInst _{NL} Mistral-GraphInst _{JSON} Mistral-GraphInst _{DOT}	89.63	81.18		98.73	62.16	83.32	76.15	77.11	82.96	79.58	50.94	99.16	68.61	86.14 84.13 85.69	75.95	75.64
Gemma-GraphInst _{NL} Gemma-GraphInst _{JSON} Gemma-GraphInst _{DOT}	90.15	78.11	49.98	99.23	65.68	78.08	82.42	76.98	88.50	75.33	51.74	98.64	63.39	86.04 83.15 88.71	70.91	75.50

Which representation of the graph is the best?

• Scalability: Natural language has the most compact representation and can handle the largest graph in a limited context budget.

		Amazon	Maple				
	# Avg Tokens	# Max Nodes	# Max Edges	# Avg Tokens	# Max Nodes	# Max Edges	
NL JSON DOT	1869.56 1972.44 2011.01	226 199 192	324 289 288	1033.61 1161.03 1181.22	280 277 277	326 321 321	

• Performance: The JSON format yields the best overall performance for all three models.



Subtask Generalization

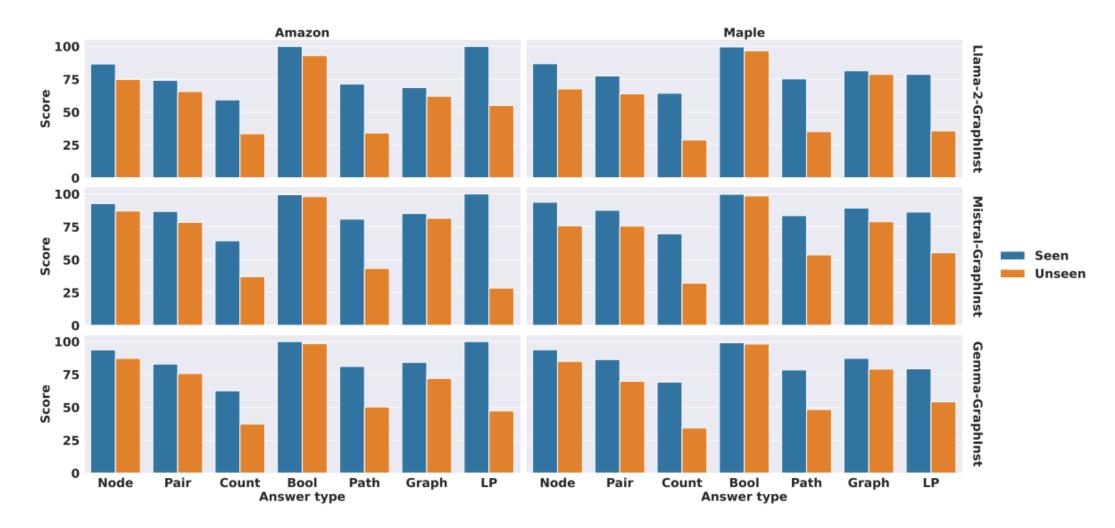


Figure 3: Experiment results of sub-task generalization on two datasets.

Answer Type Generalization & Domain Generalization

	Node	Pair*	Count	Bool*	Path	Graph*
Mistral-Inst _{ISON}	2.91	8.38	12.43	37.30	12.29	8.86
Mistral-GraphInst _{ISON}	89.63	81.18	50.77	98.73	62.16	83.32
Mistral-GraphInst-masked _{JSON}	88.09	56.43	49.91	90.18	59.31	53.65
			Ma	aple		
Mistral-Inst _{ISON}	4.24	10.81	14.45	41.09	9.74	7.74
Mistral-GraphInst _{ISON}	82.96	79.58	50.94	99.16	68.61	84.13
Mistral-GraphInst-masked _{JSON}	79.70	40.90	50.48	77.15	64.30	36.64

Table 5: Answer Type Generalization, where tasks *Pair*, *Bool* and *Graph* are unseen when training *Mistral-GraphInst-masked*.

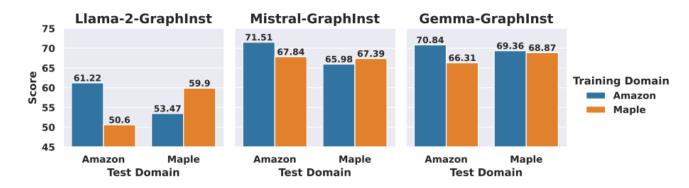


Figure 4: Compare LLMs of different scales on domain generalization.

Take-Away Messages

- Different graph representations: Natural language has the most compact representation; JSON yields the best performance after tuning.
- Different levels of generalization: LLMs could be overfitted by signals seen during training and hard to generalize to unseen subtasks, answer types, and domains.
- Limitations
 - No studies on task-level (i.e., the level between subtasks and answer types) generalization.
 - E.g., trained on degree counting \rightarrow tested on path counting
 - No studies on subdomain-level generalization
 - E.g., trained on the academic graph of CS papers \rightarrow tested on the graph of medicine papers

Midterm Project Presentations (Next Tuesday)

- 5 groups
- Each group has 10 minutes for presentation and 3 minutes for Q&A.
 - The number of presenters per group is not limited.
- If you would like to use the instructor's laptop, please send me the slides via email at least 30 minutes before the lecture.
- Presentation order: Last name in alphabetical order
 - 1. Hasnat and Rithik
 - 2. Shaohuai
 - 3. Omnia and Michael
 - 4. Yichen and Ethan
 - 5. Shuo and Hangxiao

Thank You!

Course Website: https://yuzhang-teaching.github.io/CSCE689-S25.html