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Academic Graphs
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• Nodes: Paper, Venue, Author, (Year, Field, Affiliation, …)

• Edges: Paper→Paper, Paper-Venue, Paper-Author, (Author-Affiliation, …)

• Node Attributes: Paper title/abstract, Venue name, Author name, …



Are LLMs aware of academic graphs?

3ChatGPT 3.5, queried on January 23, 2024

HIN2Vec was 
published in 
CIKM 2017.

HIN2Vec was 
written by 

Tao-yang Fu,
Wang-Chien Lee, 

and Zhen Lei.



Are LLMs aware of academic graphs?
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ChatGPT 4o, queried on January 7, 2025 Transformer was published 
in NeurIPS 2017.



Are LLMs aware of academic graphs?
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ChatGPT 4o, queried on March 15, 2025 GraphSAGE was published 
in NeurIPS 2017.



Graph Chain-of-Thought: Augmenting Large Language Models by Reasoning on Graphs. ACL 2024 Findings.

Last Lecture: Graph Chain-of-Thought
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Agenda
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• Academic Graphs as Additional Input Features
• OAG-BERT
• LinkBERT

• Academic Graphs as Supervision
• MICoL
• GraphInst
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How to sequentialize graph information?
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• BERT for Text

• BERT for Text + Graph

Transformer Layers

HIN2Vec: Explore Meta-paths in Heterogeneous Information Networks for Representation Learning …

Transformer Layers

…  ACM Conference on Information and Knowledge Management     Tao-yang Fu Wang-Chien Lee …

VENUE AUTHORTEXT



OAG-BERT: Overview
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• Pre-train a new model for encoding an academic paper’s text + graph information

• Append authors, fields-of-study, venue, and affiliation to paper text

• MLM only, no NSP

OAG-BERT: Towards A Unified Backbone Language Model For Academic Knowledge Services. KDD 2022.



OAG-BERT: Heterogeneous Entity Type Embedding
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• Make the model aware of different types of input

• Analogous to segment embeddings in the original BERT

OAG-BERT: Towards A Unified Backbone Language Model For Academic Knowledge Services. KDD 2022.



OAG-BERT: 2D-Positional Embedding
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• Jointly model inter and intra-entity token orders

• Further make aware of different types of input

• Final positional embedding = 1st positional embedding + 2nd positional embedding

OAG-BERT: Towards A Unified Backbone Language Model For Academic Knowledge Services. KDD 2022.



OAG-BERT: Span-Aware Entity Masking
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• Select a continuous span when performing MLM on graph signals

• < 4 tokens: mask the entire entity

• ≥ 4 tokens: randomly mask a continuous span of 4-10 tokens

• Motivation: In downstream applications, we usually need to predict the entire entity.

OAG-BERT: Towards A Unified Backbone Language Model For Academic Knowledge Services. KDD 2022.



More Details of OAG-BERT
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• Stage 1: MLM on text only

• Data: AMiner + PubMed

• Stage 2: MLM on text + graph

• Data: OAG (aligning AMiner and MAG)

• Averaging all token embeddings (instead of using [CLS]) as the document embedding

https://github.com/THUDM/OAG-BERT 

https://github.com/THUDM/OAG-BERT


Performance of OAG-BERT
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• Author Name Disambiguation • Literature Retrieval



Performance of OAG-BERT
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• Link Prediction • Paper Title Generation

Still significantly underperforms 
SPECTER and SciNCL



Performance of OAG-BERT
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• Metadata Prediction

• Enumerate the length (i.e., number of [MASK] tokens) and pick the answer with the 
highest conditional probability.



Performance of OAG-BERT
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• Metadata Prediction



Take-Away Messages
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• Performing MLM jointly on text and graph signals (i.e., metadata neighbors) of a paper enhances 
the representation learning ability of the model.

• The heterogeneous entity type embedding and the 2D-positional embedding make the 
model aware of different types of input.

• The model can predict metadata of a paper via zero-shot prompting.

• But we need to enumerate the length of the metadata.

• Limitations:

• Authors are intuitively semantic-indicative, but author names are practically hard to deal 
with.

• Treat each author name as one token: How to deal with new authors? Explosion of the 
vocabulary size?

• Tokenize the author names: Two authors sharing the same first/last name do not 
necessarily work on the same topic.



Agenda
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References/Citation Links
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• Available in scientific papers, 
Wikipedia articles, webpages, 
…

• We have seen models using 
citation links as supervision 
(e.g., SPECTER and SciNCL).

• How to use them as 
additional features?

• Not considered in OAG-
BERT

An example where references benefit 
question answering



LinkBERT: A Cross-Encoder Architecture
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• BERT – A pair of sentences (next or random). Simultaneously perform MLM and NSP 
(binary classification).

• LinkBERT – A pair of sentences (next, random, or linked). Simultaneously perform MLM 
and NSP (three-class classification)

LinkBERT: Pretraining Language Models with Document Links. ACL 2022.



More Details of LinkBERT & BioLinkBERT
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• LinkBERT: continue pre-training BERT-Tiny/Base/Large (4.4M/110M/340M parameters) 
using Wikipedia reference links

• Consistently outperform BERT-Tiny/Base/Large on various extractive QA datasets 

• BioLinkBERT: pre-training a base/large-size BERT model (110M/340M parameters) from 
scratch using PubMed reference links

https://huggingface.co/michiyasunaga/LinkBERT-large https://huggingface.co/michiyasunaga/BioLinkBERT-large 

https://huggingface.co/michiyasunaga/LinkBERT-large
https://huggingface.co/michiyasunaga/BioLinkBERT-large


Performance of BioLinkBERT: Multi-Choice QA
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MedQA-USMLE MMLU-Professional-Medicine



Performance of BioLinkBERT: BLURB Benchmark
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https://microsoft.github.io/BLURB/leaderboard.html 

https://microsoft.github.io/BLURB/leaderboard.html


Take-Away Messages
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• Adding a sentence from a reference paper as context helps capture knowledge and semantics 
not reflected in the local context within each paper.

• Such a cross-encoder pre-training paradigm consistently benefits QA tasks.

• Why?

• Extractive QA – Input: Context [SEP] Question; Goal: Find information (i.e., a span of 
tokens) in the context that is relevant to the question

• LinkBERT pre-training – Input: Paper 1 [SEP] Paper 2; Goal: Judge if there is information in 
Paper 1 that is relevant to Paper 2 (which may imply that Paper 1 cites Paper 2)

• Limitation:

• LinkBERT pre-training models only one citation edge every time. Is it possible to include all 
references simultaneously as additional features?

• MATCH: Metadata-Aware Text Classification in a Large Hierarchy. WWW 2021.

• How to further include other graph signals (e.g., author, venue, etc.)?



Agenda
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Extremely Fine-Grained Scientific Paper Classification
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• MAG has 740K+ categories.

• The Medical Subject Headings (MeSH) for indexing PubMed papers 
contain 30K+ categories.

• Each paper can be relevant to more than one category (5-15 
categories for most papers).

• Relevant categories: Betacoronavirus, Cardiovascular Diseases, 
Comorbidity, Coronavirus Infections, Fibrin Fibrinogen Degradation 
Products, Mortality, Pandemics, Patient Isolation, Pneumonia, …



If we could have some training data …
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• We could use relevant (paper, category) pairs to fine-tune a pre-trained language model.

• Both Bi-Encoder and Cross-Encoder are applicable.

Should be large

Bi-Encoder Cross-Encoder

Should be large

• However, human-annotated training samples are NOT available in many cases!

• We are asking annotators to find ~10 relevant categories from ~100,000 candidates!



Using Academic Graph Signals to Replace Annotations
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• If relevant (paper, category) pairs are not available, can we automatically create relevant (paper, 
paper) pairs?

• Two papers sharing the same author(s) are assumed to be similar.

• Two papers sharing the same reference(s) are assumed to be similar.

• …

• The notion of meta-paths and meta-graphs



Using Academic Graph Signals to Replace Annotations
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• Examples:

• Doc1 and Doc2 are connected via the meta-path PAP.

• Doc1 and Doc2 are NOT connected via the meta-path PVP.

• Doc1 and Doc2 are connected via the meta-graph P(AA)P.

• Why do need to consider meta-graphs?

• One author may work on many different topics, but when two authors collaborate, the scope 
usually becomes much narrower.



Graph-Induced Contrastive Learning
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• Two papers connected via a certain meta-path/meta-graph should be more similar than two 
randomly selected papers.

Bi-Encoder

Should be larger Should be smaller

Cross-Encoder

Should be larger Should be smaller

Metadata-Induced Contrastive Learning for Zero-Shot Multi-Label Text Classification. WWW 2022.



Performance of MICoL
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• Cross-Encoder > Bi-Encoder

• Meta-paths > One-hop citation information (SPECTER)

• Graph-induced contrastive learning > Text-only contrastive learning (EDA & UDA)



Effect of Meta-Paths/Meta-Graphs
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• All examined meta-paths/meta-graphs are beneficial, except PVP.



Performance on Tail Labels
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• New evaluation metrics: Propensity-Scored P/NDCG@k (a.k.a., PSP@k and PSN@k)

• If you can predict an infrequent label (e.g., “Lagrangian SVM”) correctly, you will get a 
higher “reward” than you predict a frequent label (e.g., “Computer Science”).



Take-Away Messages
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• Given an academic graph, we can go beyond one-hop citation links to create positive 
(paper, paper) pairs for contrastive learning.

• For the fine-grained paper classification task, using venue information as supervision is 
too vague.

• However, using venue as additional features is consistently helpful!

• The Effect of Metadata on Scientific Literature Tagging: A Cross-Field Cross-Model Study. 
WWW 2023.

• Limitations

• Rely on human knowledge to select a good meta-path/meta-graph. How do we 
know which meta-path/meta-graph is the most helpful?



Which type of metadata is the most helpful?
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• Is the contribution of venues, 
authors, and references to 
paper classification consistent 
across different fields?

• NO! BUT the effects of 
metadata tend to be 
similar in two similar 
fields.

• The experience of using 
metadata in one field can 
be extrapolated to a 
similar field.

The Effect of Metadata on Scientific Literature Tagging: A Cross-Field Cross-Model Study. WWW 2023.



Agenda
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• Academic Graphs as Additional Input Features
• OAG-BERT
• LinkBERT

• Academic Graphs as Supervision
• MICoL
• GraphInst



Instruction Tuning LLMs on Graphs
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• How to teach an LLM about an unseen graph? 

Language is All a Graph Needs. EACL 2024 Findings.



How to represent a graph?
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• Natural Language
• Paper9 is written by Author2 and Author5. Paper9 is 

published on Venue 2. Paper9 cites Paper 7 and …

• JSON
• {“Paper9": {“written_by": [“Author2", “Author5"], 

“published_on": “Venue2”, “cite”: [“Paper7”, …]}}

• DOT (Code)
• digraph G {

 Paper9 -> {Author2, Author5} [label=“written_by"];

 Paper9 -> {Venue2} [label=“published_on"];

 Paper9 -> {Paper7, …} [label=“cite"]

}

Investigating Instruction Tuning Large Language Models on Graphs. COLM 2024.



How should the LLM generalize?
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• Seen Question
• Q: What are the written_by neighbors of Paper9?

• A: Author2, Author5

• Unseen Subtask
• Q: What is the published_on neighbor of Paper9?

• A: Venue2

• Unseen Answer Type
• Q: How many written_by neighbors does Paper9 have?

• A: 2

• Unseen Domain (Given a new graph, e.g., medical KG)
• Q: What are the caused_by neighbors of Disease25?

• A: Chemical6, Chemical10

Investigating Instruction Tuning Large Language Models on Graphs. COLM 2024.



Examined Answer Types, Tasks, and Subtasks

42Investigating Instruction Tuning Large Language Models on Graphs. COLM 2024.

• Unseen subtasks: trained to find author neighbors → tested to find venue neighbors

                             trained to count 1-hop neighbors → tested to count 2-hop neighbors



Examined Answer Types, Tasks, and Subtasks

43Investigating Instruction Tuning Large Language Models on Graphs. COLM 2024.

• Unseen answer types: trained to find author neighbors (answer type: node) → tested to 
predict if two papers are connected via paths (answer type: bool)



Datasets and Models
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• Datasets

• MAPLE [1] – Node: paper, 
author, venue

• Amazon [2] – Node: 
product, brand, category 

• Models (instruction/chat versions)

• Llama-2 7B

• Mistral 7B

• Gemma 7B

[1] The Effect of Metadata on Scientific Literature Tagging: A Cross-Field Cross-Model Study. WWW 2023.
[2] Justifying Recommendations using Distantly-Labeled Reviews and Fine-Grained Aspects. EMNLP 2019.

https://github.com/yuzhimanhua/MAPLE 

https://github.com/yuzhimanhua/MAPLE


Performance of Graph Instruction Tuning
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Which representation of the graph is the best?
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• Scalability: Natural language has the most compact representation and can handle the 
largest graph in a limited context budget.

• Performance: The JSON format 
yields the best overall performance 
for all three models.



Subtask Generalization
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Answer Type Generalization & Domain Generalization
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Take-Away Messages
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• Different graph representations: Natural language has the most compact representation; 
JSON yields the best performance after tuning.

• Different levels of generalization: LLMs could be overfitted by signals seen during 
training and hard to generalize to unseen subtasks, answer types, and domains.

• Limitations

• No studies on task-level (i.e., the level between subtasks and answer types) 
generalization.

• E.g., trained on degree counting → tested on path counting

• No studies on subdomain-level generalization

• E.g., trained on the academic graph of CS papers → tested on the graph of 
medicine papers



Midterm Project Presentations (Next Tuesday)
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• 5 groups

• Each group has 10 minutes for presentation and 3 minutes for Q&A.

• The number of presenters per group is not limited. 

• If you would like to use the instructor’s laptop, please send me the slides via email at 
least 30 minutes before the lecture.

• Presentation order: Last name in alphabetical order

• 1. Hasnat and Rithik

• 2. Shaohuai

• 3. Omnia and Michael

• 4. Yichen and Ethan

• 5. Shuo and Hangxiao



Thank You!
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