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Agenda

e Mapping the Increasing Use of LLMs in Scientific
Papers

e Monitoring Al-Modified Content at Scale: A Case Study
on the Impact of ChatGPT on Al Conference Peer
Reviews

e NEXT-GPT: Any-to-Any Multimodal LLM



Problem Overview and Implications

e Rapid adoption of LLM
assistance in academic
writing and review.

e Growing need to identify
and quantify LLM modified
content across different
disciplines.

Image Credit: Liang et al. (2024). “Mapping the Increasing Use of LLMs in Scientific Papers.” arXiv:2404.01268.
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Mapping the Increasing Use of LLMs in
Scientific Papers: Background

e Previous proposed methods for GPT Detectors
o Zero-shot approach
o Binary Classification
o Watermarking*



Mapping the Increasing Use of LLMs in
Scientific Papers: Background

e Questions of both robustness and reliability still remained
o Overfitting to a specific LLM
o Possible circumventions
o Bias against non-native English Speakers

e Introduction to a probabilistic method to classify LLM-modified
content.



Distributional LLM Quantification: Idea

w

° I
2150'0 —e— pivotal ,E
§ > intricate »!
T realm !
€ 100.0 ,

e Proposed statistical E= =

Nov 30,2022 | /¢
: ¥

method to estimate the e gl |
proportion of LLM modified "
content. N

®— pivotal

e Maximum likelihood 1) - nese

120.0 realm

estimation based on token
occurrences.

on words

Launch
Nov 30, 2022

©
o
=)

Frequency per one
H [=2]
o o
o o
.
» ®
oy |
<
e

)
D L
o
»
»

5668558

s AN il 40
= : o w ¢ e
0.0 2% i

20211 20214 20217 202110 2022.1 20224 20227 202210 2023,1 2023.4 2023.7 2023.10 2024.1

Word Frequency Shift in arXiv Computer Science abstracts over 14 years



Distributional LLM Quantification: Generating
Training Data

e Data collected from arXiv, bioRxiv, and Nature portfolio.
o 2,000 samples from each from Jan 2020 - Feb 2024.
e A two stage approach to generate LLM produced data
o Step 1. Given a paper known not to have LLM
modifications, use an LLM to generate a bulleted list
summary.
o Step 2: Use an LLM (gpt-3.5) to generate a paragraph
based on that outline.



LLM prompt

The

Now

aim here is to reverse-engineer the author's writing process by
taking a piece of text from a paper and compressing it into a more
concise form. This process simulates how an author might distill
their thoughts and key points into a structured, yet not overly

condensed form.

as a first step, first summarize the goal of the text, e.g., is it
introduction, or method, results? and then given a complete piece of
text from a paper, reverse-engineer it into a list of bullet points.

Following the initial step of reverse-engineering the author's writing

process by compressing a text segment from a paper, you now enter the
second phase. Here, your objective is to expand upon the concise
version previously crafted. This stage simulates how an author
elaborates on the distilled thoughts and key points, enriching them
into a detailed, structured narrative.

Given the concise output from the previous step, your task is to develop

it into a fully fleshed-out text.

Your task is to proofread the provided sentence for grammatical accuracy.

Ensure that the corrections introduce minimal distortion to the
original content.



Distributional LLM Quantification: Mathematical
Formulation

e Let P and @ be the probability distributions of human-written and LLM modified

documents respectively and let X be the corpus of documents.

e The mixture distribution is given by D,(X) = (1 — a)P(z) + aQ(z), where a is the

desired estimate of Al-modified document based on observed documents.

e Parameterizing the distribution of P and @ based on estimating the probability of

token occurrence.

e Let A= {0,0.05,0.1,0.15,0.2,0.25}.The optimal fraction « is given by maximizing the
log-likelihood of the observed documents under the parameterized mixture distribution

Dor = (1 — a)Pr(z) + aQr(z)

v

Ay = argmax = log((1 — a)Pr(z) + aQp(z))
acA i—1



Data Split, Model Fit and Evaluation

Separate models for

abstracts and introductions.

Model fitted on data from

2020 and validated with data

from 2021 on.

o Grouped between pre and
post ChatGPT era

Ability to construct a

validation set for a ground

truth a.

/
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Relationships: Posting Frequency and LLM Usage
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Relationships: Paper Similarity and LLM Usage
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Relationships: Paper Length and LLM Usage

e Shorter papers (<5000 words)
exhibit higher LLM-modified
content compared to longer
papers

o Abstracts of shorter papers
showed ~17.7% modification
vs. ~13.6% for longer papers.

o Trend holds for
sub-categories such as
cs.CV and cs.LG, but not for
cs.CL.
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Limitations

e Solely focuses on ChatGPT.
o The framework might not fully capture nuances from other
LLMs
e Increased LLM research
o Research on LLMs after ChatGPT's release might inadvertently
affect the method'’s accuracy.
e language Shifts
o Prior work shows some detection methods might mistakenly
flag texts by non-native speakers



Agenda

e Mapping the Increasing Use of LLMs in Scientific
Papers

e Monitoring Al-Modified Content at Scale: A Case Study
on the Impact of ChatGPT on Al Conference Peer
Reviews

e NEXT-GPT: Any-to-Any Multimodal LLM



A Case Study on the Impact of ChatGPT on Al

Conference Peer Reviews

e Context and Motivation
o Study focuses on the use of LLM assistance in the peer review
process.
o Examines how Al influences the quality of evaluation
e Uses the distributional GPT quantification framework.
e Paper explores further relationships between various
circumstances and Al use.
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Figure 12: Word cloud of top 100 adjectives in LLM feedback, with font size indicating frequency.



Method Overview and Validation
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Data Collection and Evaluation on Validation Set
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Further Evaluation

Validation Ground Estimated Prediction
No. Data Source  Truth o Error
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Comparison to Instance-Based Detection Methods

No. Validation Ground RADAR Deepfake Fast-DetectGPT BERT
z Data Source  Truth o  Esti da Esti da Esti da Esti d o Predictor Error
) ICLR2023  0.0% 99.3% 0.2% 11.3% 1.1% 1.1%
. . ) ICLR 2023  2.5% 99.4% 0.2% 11.2% 2.9% 0.4%
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Com putat I Ona | Iy eff—l C I ent (25) CoRL 2022  5.0% 99.5% 0.2% 10.4% 5.0% 0.0%
(26)  CoRL2022  7.5% 99.5% 0.3% 10.8% 6.8% 0.7%
(27)  CoRL2022  10.0% 99.5% 0.3% 11.0% 8.4% 1.6%
M M M (28)  CoRL2022  12.5% 99.5% 0.3% 10.9% 10.2% 2.3%
UI’I ng |n erenCe t“ | |e (29)  CoRL2022  15.0% 99.5% 0.3% 11.1% 11.8% 3.2%
(30)  CoRL2022  17.5% 99.5% 0.3% 11.1% 13.8% 3.7%
(31)  CoRL2022  20.0% 99.5% 0.3% 11.4% 15.5% 4.5%
O RO b u St n e S S to (32)  CoRL2022  22.5% 99.5% 0.2% 11.6% 17.4% 5.1%
(33)  CoRL2022  25.0% 99.5% 0.3% 11.7% 18.9% 6.1%
L]
P rO Of re a d I n g Ours RADAR(RoBERTa) Deepfake(Longformer) Fast-DetectGPT(Zero-shot) BERT
6.809 x10° 8 9.671 50.781 84.669 2.721

~ Amortized inference computation cost per 32-token sentence in GFLOPs



Results of Real Reviews

Validation Estimated

e Addresses main question of case study No.  Data Source ST
(1)  NewlPS2019 17% 03%
| (2)  NeurlPS2020 14%  0.1%
. X 3 (3) NewrlPS2021 1.6% 02%
3 16%1{ -%— Nature portfolio '19-'23 | 4)  NeulPS2022 19%  0.2%
= % EMNLP'23 ! (5) NeurlPS2023 9.1% 0.2%
< 12% - e ! (6) ICLR2023 16% 0.1%
o —$— NeurlPS '19-23 ChatGPT ! ) ICLR 2024 10.6% 0.2%
% 8% { —®— CoRL'21-23 Launch! 8)  CoRL2021 24% 0.7%
i . ) CoRL 2022 24%  0.6%
= 40 $- ICLR'23-24 Noy 30, 2022 | (1)  CoRL2023 65% 0.7%
L) /0 (11) EMNLP2023 169% 0.5%
L O% i : ; : L : (1) Nature portfolio 2019 0.8% 0.2%
2019 2020 2021 2022 2023 2024 ) Nemmmam vre o
(4)  Nature portfolio 2022 1.0%  0.3%
(5)  Nature portfolio 2023  1.6% 0.2%




Detection of Outputs based off Outline

e Uses the same two-stage
approach as discussed in first  $25%| ' (cLR"23

paper: © 207 mmm NeurlPs ‘22
o Create revi tlin 5 15% 1 mmm CoRL 22 |
eate review outline 2 0 =

while reading paper

i RN

o F tline into LLM | mip= i |
eed ou . e. (.) 0.0% 5.0% 10.0% 15.0% 20.0% 25.0%
e Uses same distributional Ground Truth Alpha (%)
framework to prediCt a. Skeleton generated LLM Reviews

Estimated
(@]
S



Relationships and Trends
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Key Limitations

e Potential Confounding Factors:
o Variations in review guidelines, changes in reviewer
demographics, etc.
e Synthetic Validation Limitations
o Synthetic data may still not fully capture complexity of real
world limitations



Agenda

e Mapping the Increasing Use of LLMs in Scientific
Papers

e Monitoring Al-Modified Content at Scale: A Case Study
on the Impact of ChatGPT on Al Conference Peer
Reviews

e NEXT-GPT: Any-to-Any Multimodal LLM



Key Motivation

e Develop a general-purpose multimodal LLM that can accept
inputs and deliver outputs in any combination of modalities
o Overall goal is to mimic human-like any-to-any modalities



NExXT-GPT: An Overall Look
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NExXT-GPT: An Overall Look

Multimodal Encoding Stage

o Leverages well-established models to encode inputs (ImageBind)

LLM Understanding and Reasoning Stage

o Outputs textual response directly and instructions to encoding
layer (Vicuna 7B-vO)

Generation Stage

o Routes instruction signal from LLM stage and synthesizes content
for output (Stable Diffusion, Zeroscope, AudioLDM)

Table 1. Summary of NEXT-GPT system configuration. Only 1% of parameters need updating during fine-tuning.

Encoder Input Projection LLM Output Projection Diffusion
Name Param Name Param Name Param Name Param Name Param
Text — - — — — - — -
Image Vicuna 7B Transformer 3IM#H SD 1.3B
Audio ImageBind 1.2B Grouping 28M ™ (LoRA 33Mé) Transformer 3IMH AudioLDM 975M

Video Transformer 32MH Zeroscope 1.8B




Multimodal Alignment Learning

e Each input has its own

feature space

o Must all be mapped into
a single compatible
space

o Signals produced by the
LLM must be accurately
communicated to
encoders

o Must be able to do so
quickly and efficiently

Text
Image @
-

Audio

Video IE Do

More modalities

Multimodal Input
Encoding



Encoding-side Alignment

e Different modalities are typically represented using patch-based or
grid-based features.

e Introduce learnable concept tokens
o Act as intermediary representations and grouped into concepts
o Representations are fed into ‘frozen’ LLM to train conversions

& Cross Entropy |

N nrommenn,
o Soscrpt Token 20 Image Image
) [ ® a8 Caption Caption
lmage Img. Patch Rep. @, ! Concept Img. Rep.
. = j o ) :i
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s o & | & &l & Caption Caption
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Input Projection Predicted Gold Annotation



Decoding-side Alignment

e Intermediary LLM output produces signal (instruction) token.

e Utilizes a special set of tokens to guide output projection layers
o Only projection layers are fine tuned.
o Loss function penalizes the model for deviating from correct

t L]
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[ S0 |
LLM Output Rep. o g I
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Experiment Setup

e Utilizes specially curated modality switching instruction tuning
“Test+X" dataset (MosIT)
o Constructed as an (INPUT, OUTPUT) pair,
o Quantitative metrics for text outputs, and image/video quality
used.
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Results

Table 2. Zero-shot evaluation of image captioning with CIDEr (1) score on NoCaps (Agrawal et al., 2019), Flickr 30K (Young et al., 2014) and COCO
(Karpathy & Fei-Fei, 2017), and image question answering on VQA*2 (Goyal et al., 2017), VizWiz (Gurari et al., 2018) and OKVQA (Marino et al.,
2019), and two evaluation-only benchmarks, MMB (Liu et al., 2023c¢) and SEED (Li et al., 2023a). The best results are marked in bold, and the second
ones are underlined.

Model Visiden Image Captioning Image Question Answering Comprehensive
NoCaps Flickr 30K COCO VQA"? VizWiz OKVQA MMB SEED
InstructBLIP (Dai et al., 2023) Vicuna-7B 123.1 824 102.2 - 334 339 36.0 -
LLaVA (Liu et al., 2023b) LLaMA-2-7B-Chat  120.7 82.7 - - - - 36.2 -
mPLUG-OwI (Ye et al., 2023b) LLaMA-7B 117.0 80.3 1193 - 39.0 - 46.6 340
Emu (Sun et al., 2023) LLaMA-7B - - 117.7 40.0 354 34.7 - -
DREAMLLM (Dong et al., 2023) Vicuna-7B - - 1154 56.6 458 443 499 -
Video-LLaVA (Lin et al., 2023) Vicuna-7B - - - 74.7 48.1 - 60.9 -
NExXT-GPT Vicuna7B 1237 845 1249 667 484 521 580 575

Table 3. Comparison of video reasoning tasks on MSRVTT (Xu et al., 2016), MSVD-QA and MSRVTT-QA (Xu et al., 2017) and NEXTQA (Xiao et al.,
2021), and the audio captioning task on AudioCaps (Kim et al., 2019). Scores with * means being fine-tuned on the training dataset.

Model Virdin Video Captioning Video Question Answering Audio Captioning
MSR-VTT MSVD-QA MSRVTT-QA NEXTQA AudioCaps

Codi (Tang et al., 2023) - 74.4* - - - 78.9*

UIO-ZXXL (Lu et al., 2023) 6.8B 48.8* 415 52.1 - 48.9*

Video-LLaMA (Zhang et al., 2023¢) LLaMA-7B - 51.6 - 29.6 -

Video-LLaVA (Lin et al., 2023) Vicuna-7B - 70.7 59.2 - -

Emu (Sun et al., 2023) LLaMA-7B - 324 14.0 6.8 -

NEXT-GPT Vicuna-7B 76.2* 64.5 61.4 50.7 81.3*




Impact of Signal Tokens and Grouping Mechanisms
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Figure 6. The generation quality under different numbers of modality signal tokens.

Table 4. Results on text-to-image/audio/video generation (MS COCO
(Lin et al., 2014), AudioCaps (Kim et al., 2019), and MSRVTT (Xu et al., HuggingGPT  Visual-ChatGPT = NEXT-GPT-caption ~ NExT-GPT

2016)). t: zero-shot results. w86 ]
o<
Image Audio Video A
Model - 2]
s FID () FAD (}) CLIPSIM (1) g7
SD-1.5 (Wang et al., 2022c) 11.21 - - § 72 - |
Codi (Huang et al., 2023a) 11.26 1.80 28.90 g
AudioLDM-L (Liu et al., 2023a) - 1.96 - W 65 |- =
GILL-8B' (Koh et al., 2023) 12.20 2 - E ] = T
Emu-13Bt (Sun et al., 2023) 11.66 ) ) Instruction Following Rationality Quality
UIO-2XXL (Lu et al., 2023) 1339 2.64 = Figure 5. Human Evaluation (1-100 scale, results are on average) of
NEXT-GPT 10.07 1.68 31.97

NEXT-GPT in comparison with pipeline baselines.
NEXT-GPT 11.18 1.74 30.96




What is the unusual part of
this video?

The unusual part of this video is that a dog is
riding a skateboard. It is not common to see a
dog on a skateboard, as dogs are typically not
able to ride skateboards or bicycles. This scene
is unique and interesting because it showcases
a dog's ability to adapt and participate in
human-made activities, demonstrating its
intelligence and adaptability.

That is pretty cool. How about adding some
music to make this scene look more funny?

Certainly! Here's a synthesized music track
that could enhance the humor and
lightheartedness of the scene:

Do you have any other similar unusual scenes?

Show them.
E I have a set of such
~ =2 kinds of scenes:

o

[

&

&

>
@ I am in a bad mood, so bad so sad.

I am sorry to hear about that. Sometimes, it is
hard to shake off a bad mood. Have you tried
listening to some lifting music or watching a
comedy to cheer you up?

Can you show something to cheer me up?

Sure, here's a video of
a cute puppy playing
in the park. It always
makes me feel better.

(B)

I need to prepare my presentation for my
history class, can you give some inspiration?

Of course! History is a fascinating subject. One
approach you could take is to create a timeline
presentation. You can use images, videos, and
text to show the progression of events and
highlight key moments in history. ...

@ Can you show me some examples?

Certainly! Here are a few examples of timeline
presentations and historical figures :1.2.3.

(A)

Figure 4. Qualitative examples showcasing the interpretative and generative capabilities of NExT-GPT across diverse modalities or their combinations.

(€




[L.imitations

e GPT is constrained by the quantity of fine-tuned data as well as
the quality of the off the shelf models used.
o The possibility of low quality responses and hallucinations still
imminent.



Conclusion

e In this presentation, we quantified the usage Large Language
Models in the academic sphere at a macro level.
o Quantified the usage in academic papers and peer reviews in
various fields.
o Analyzed the relationship of various circumstances and the
rate of usage.
e We studied the development of a human-level Al Agent
o Studied the end-to-end architecture of a MM-LLM and its
utilization of mainstream encoders and decoders.
o Further examined an efficient fine tuning processes to ensure
proper alignment of transformers.



Questions?



