
Scientific Agents
Rithik Kapoor

LLM Agents

● Traditional LLMs lack memory, struggle to plan multi-step tasks, and can’t
interact dynamically with external tools or data sources.

● Agentic LLMs overcome these limitations by integrating planning,
decision-making, memory, and tool-use capabilities, allowing them to execute
complex, multi-step tasks autonomously.

● LLM Agents can autonomously research the internet, write and debug code,
summarize documents, and dynamically adjust their actions based on
intermediate results and real-time feedback.

Agenda

● Paper 1: Autonomous Chemical Research with Large Language Models
● Paper 2: Augmenting Large Language Models with Chemistry Tools
● Paper 3: Monte Carlo Thought Search: Large Language Model Querying for

Complex Scientific Reasoning in Catalyst Design

Paper 1

Paper’s Contributions

● Introduce CoScientist, an LLM based agent capable of autonomous design,
planning, and performance of scientific experiments.

● Inference based method that uses tools to augment pretrained LLMs.
● Applied on 6 tasks:

1. Planning chemical syntheses of known compounds using publicly available data
2. Efficiently searching and navigating through extensive hardware documentation
3. Using documentation to execute high-level commands in a cloud laboratory
4. Precisely controlling liquid handling instruments with low-level instructions
5. Tackling complex scientific tasks that demand simultaneous use of multiple hardware modules

and integration of diverse data sources
6. Solving optimization problems requiring analyses of previously collected experimental data

Overview of CoScientist ● Pretained LLM like GPT-4.
● Responsible for coordinating tasks to

complete task provided by input prompt
● Can invoke four commands to gain extra

knowledge: “GOOGLE”, “PYTHON”,
“DOCUMENTATION”, “EXPERIMENT”

Overview of CoScientist ● Pretained LLM like GPT-4.
● Responsible for coordinating tasks to

complete task provided by input prompt
● Can invoke four commands to gain extra

knowledge: “GOOGLE”, “PYTHON”,
“DOCUMENTATION”, “EXPERIMENT”

● Another LLM connected to the internet.
● Provides extra information to the

Planner that can be used to perform
tasks.

● Grounds system’s knowledge to prevent
hallucinations

Overview of CoScientist ● Pretained LLM like GPT-4.
● Responsible for coordinating tasks to

complete task provided by input prompt
● Can invoke four commands to gain extra

knowledge: “GOOGLE”, “PYTHON”,
“DOCUMENTATION”, “EXPERIMENT”

● Another LLM connected to the internet.
● Provides extra information to the

Planner that can be used to perform
tasks.

● Grounds system’s knowledge to prevent
hallucinations

● Module that executes code
● Performs calculations for the planner to

prepare for experiments
● Performs code execution in Docker

container to protect user’s machine

Overview of CoScientist ● Pretained LLM like GPT-4.
● Responsible for coordinating tasks to

complete task provided by input prompt
● Can invoke four commands to gain extra

knowledge: “GOOGLE”, “PYTHON”,
“DOCUMENTATION”, “EXPERIMENT”

● Another LLM connected to the internet.
● Provides extra information to the

Planner that can be used to perform
tasks.

● Grounds system’s knowledge to prevent
hallucinations

● Module that executes code
● Performs calculations for the planner to

prepare for experiments
● Performs code execution in Docker

container to protect user’s machine

● RAG approach to gather information
about APIs required to control
hardware used in experimental
setups.

Overview of CoScientist ● Pretained LLM like GPT-4.
● Responsible for coordinating tasks to

complete task provided by input prompt
● Can invoke four commands to gain extra

knowledge: “GOOGLE”, “PYTHON”,
“DOCUMENTATION”, “EXPERIMENT”

● Another LLM connected to the internet.
● Provides extra information to the

Planner that can be used to perform
tasks.

● Grounds system’s knowledge to prevent
hallucinations

● Module that executes code
● Performs calculations for the planner to

prepare for experiments
● Performs code execution in Docker

container to protect user’s machine

● RAG approach to gather information
about APIs required to control
hardware used in experimental
setups.

● Utilizes another separate LLM
external to the Planner

● Executes generated
code on hardware

● Provides synthetic
procedure for manual
experimentation if
experiment is not
doable on hardware

Documentation Search Module Implementation Details

● Used a vector database approach to search for relevant documentation.
● Steps for search for relevant documentation using vector database approach:

1. Chunk your documentation into appropriate sizes
2. Use a model like OpenAI’s ada to convert each chunk into an embeddings
3. To query, convert the query into an embedding
4. Find relevant documentation chunks by calculating the similarity between the query

embedding and chunk embedding using a distance based metric to assess similarity.

Documentation Search Module Implementation Details

Experiments

13

Assessing Web Search Module Capabilities

● Multiple language models were assessed to see how well they can serve as a
web searcher. (search-gpt-4, search-gpt-3.5-turbo, GPT-3.5, GPT-4, Claude
1.3, Falcon-40B-Instruct)

● Test set was designed in which models were tasked with synthesizing seven
compounds.

● Models scored between 1-5 in their ability to provide a detailed compound
synthesis.

Assessing Web Search Module Capabilities

Assessing Web Search Module Capabilities

Abilities in Controlling Laboratory Hardware

● The system’s ability was assessed through multiple experiments:
○ Simple plate-layout specific experiments like “color every other line with one color of your

choice”. Just requires control of a liquid handler to solve problem.

○ Tasks that involve the integration of multiple modules. For example, “In 3 wells of a 96-well
plate, three different colours are present—red, yellow and blue. Determine the colors and their
positions on the plate. This task requires both the liquid handler and UV-Vis plate reader to
solve the problem.

Abilities in Controlling Laboratory Hardware

Integrated Chemical Experiment Design

● Test to see how well CoScientist can use all of its tools to perform catalytic
cross-coupling experiments.

● Performs the experiment in the following steps:
1. Uses internet to find appropriate reaction conditions and stoichiometries
2. Calculates required reagent volumes and generates hardware protocols
3. Successfully identifies and corrects errors in hardware module method names
4. Gas chromatography confirms formation of target products for both reactions
5. Shows reasoning capabilities about reagent selection and provides justifications

Key Takeaways

● Coscientist, powered by GPT-4, autonomously plans and executes chemical
experiments using tools like web search, code execution, and lab APIs.

● Has the ability to accurately perform complex tasks such as synthesis
planning, hardware control, and experiment automation with minimal human
input.

● Validated through real-world experiments (e.g., Suzuki and Sonogashira
reactions), Coscientist showcases the potential of LLMs in accelerating
scientific discovery.

Paper 2

Paper’s Contributions

● Introduce ChemCrow, a chemistry LLM agent built on GPT-4 to accomplish
tasks across organic synthesis, drug discovery, and materials design.

● Integrates 18 expert-designed tools spanning synthesis, safety, molecule
analysis, and more.

● Validated effectiveness via real-world synthesis of an insect repellent,
organocatalysts, and chromophore discovery.

Overview of ChemCrow

● LLM provided with a list of tools names, descriptions of their utility, and details
of expected input/output.

● Model is guided to follow Thought, Action, Action Input, and Observation
format to allow for chain-of-thought reasoning.

● By augmenting the model with tools, the aim is to transition the model from a
hyper-confident hallucinating model to a reasoning engine that reflects on a
task and uses tools to gather information.

Overview of ChemCrow

Tools Used for LLM Augmentation

● General Tools: Web search, Python REPL, LitSearch

● Molecule Tools: Name2SMILES, SMILES2Price, PatentCheck,
SMILES2Weight.

● Reaction Tools: ReactionPredict, SynthesisPlanner, ReactionExecute.

● Safety Tools: ControlledChemicalCheck, ExplosiveCheck, SafetySummary.

Experiments and
Results

26

Autonomous Chemical Synthesis

Human-AI Collaboration

Evaluation Across Diverse Chemical Use Cases

● Compared ChemCrow vs. GPT-4 across 14 tasks using expert and LLM
assessments.

● ChemCrow outperformed GPT-4 in chemical accuracy and task completion.

● GPT-4 responses were more fluent but often incorrect.

● Human experts preferred ChemCrow; LLM evaluators showed GPT-4 bias.

Evaluation Across Diverse Chemical Use Cases

Key Takeaways

● ChemCrow transforms LLMs into practical chemistry agents by integrating 18 domain-specific tools that handle tasks like
reaction prediction, molecule modification, safety checks, and synthesis execution, going far beyond the capabilities of
standalone LLMs.

● The agent can autonomously perform complex experimental tasks such as synthesizing insect repellents and
organocatalysts, by planning multistep syntheses, adapting to errors in robotic platforms, and executing physical experiments
with no human intervention.

● ChemCrow supports meaningful human-AI collaboration, demonstrated through successful joint efforts like machine
learning-driven chromophore discovery—where the model cleaned data, trained a model, and proposed synthesis, while the
chemist validated the results.

● Evaluation by expert chemists shows ChemCrow outperforms GPT-4 on chemical accuracy, reasoning, and task
completion, especially on complex or novel problems that require real-world understanding and precise tool use.

Paper 3

Paper’s Contributions

● Introduces the Monte Carlo Reasoner (MCR)—a method that augments large language
models with tree-based reasoning for scientific tasks like catalyst discovery.

● Develops a new chemistry-focused dataset—BioFuelQR—to evaluate LLM reasoning on
realistic chemical problems faced daily by scientists.

● Incorporates a domain-specific reward function (based on adsorption energy) to assess the
quality of LLM-generated catalysts.

● Achieves significant improvements over existing prompting techniques like
Chain-of-Thought (CoT) and Tree-of-Thought (ToT),

Problems With LLM Querying Currently

● Prompts like “What is a good catalyst for reaction X?” yield answers no better
than a search engine; they lack scientific depth and justification.

● Answers generated lack domain specificity and key technical terminology.

● There's a high risk of hallucinations, where the model fabricates confident but
incorrect information, undermining trust in its outputs.

Monte-Carlo Reasoner: Overview and Goal
● MCR is a zero-shot prompting strategy that guides LLMs to perform

structured reasoning for scientific tasks without additional model training.

● Uses Monte Carlo Tree Search (MCTS) to explore and expand prompts by
applying domain-inspired actions (e.g., adding constraints like low toxicity
or catalyst type)

● Each prompt P is a node in the tree.

● Each action a∈A modifies the prompt (e.g., add a constraint).

● Each edge (P,a) leads to a new prompt.

● The LLM’s response to a prompt gives a reward R(P), which scores the
quality of the suggested catalysts.

● The search proceeds by simulating different prompt sequences and
updating estimates based on outcomes.

● Goal is to find prompt Po, which is the optimal prompt.

Monte-Carlo Reasoner: Actions

Monte-Carlo Reasoner: Steps

1. Initialize the search tree
2. Simulate the tree search

2.1. Action Selection
2.2. Tree Expansion
2.3. Reward calculation

3. Find prompt with maximum reward

Monte-Carlo Reasoner: 1. Initialize the Search Tree

● We start of with providing our start prompt P0. This prompt must be of the
form of “What are the top-k catalysts for…”

● This prompt will serve as the root of the tree root(T).

Monte-Carlo Reasoner: 2. Simulate the tree search

● We now start the tree search loop. In each iteration of the loop we:
a. Traverse the tree using action selection

b. Expand the tree by adding a new leaf (prompt Pt)

c. Calculate the reward of the prompt Pt and update downstream rewards V(P, a).

● We repeat this tree search M times, where M is the number of candidate
prompts we want to generate.

Monte-Carlo Reasoner: 2.1. Traverse the Tree

● During each tree traversal we start at the root of the tree.
● We decide which child node to go to using this UCB-like formula:

Monte-Carlo Reasoner: 2.2. Expand the Tree

● When we reach a leaf node after tree traversal, we expand the tree by adding
a new prompt P’ = at(Pt). Here at is calculated by the UCB formula at the leaf
step.

Monte-Carlo Reasoner: 2.3. Reward Calculation

● Calculate reward for prompt P’ as:

● Update all the cumulative rewards for all t using new reward:

Monte-Carlo Reasoner: 3. Find prompt With Maximum Reward

● Traverse through the tree after M steps and find node (prompt) with maximum
reward:

Experiments

44

Baselines and Datasets

● Baselines:
○ Chain of Thought (CoT): A reasoning approach where an LLM generates

step-by-step intermediate thoughts to arrive at a final answer.

○ Self-Consistency CoT: An extension of CoT where multiple reasoning paths
are sampled and the most consistent answer is selected via majority voting.

○ Tree of Thought (ToT): A structured reasoning framework where an LLM
explores multiple reasoning branches in a tree-like manner, evaluating and
expanding promising paths.

● Datasets: OpenCatalysis (adsorption focus) and BioFuelQR (biofuels reasoning).

Results

Key Takeaways

● The paper introduces Monte Carlo Reasoner (MCR), a method that uses Monte
Carlo Tree Search (MCTS) to guide large language models (LLMs) in performing
complex scientific reasoning in catalyst design.

● MCR significantly outperforms CoT, self-consistency CoT, and Tree-of-Thought
(ToT) approaches on two new benchmarks: OpenCatalysis and BioFuelQR, showing
up to 25.8% improvement in catalyst selection quality.

● It incorporates a domain-specific reward function (adsorption energy estimates) to
guide the search toward more scientifically accurate and specific responses.

Questions?

