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LLM Agents

Traditional LLMs lack memory, struggle to plan multi-step tasks, and can’t
interact dynamically with external tools or data sources.

Agentic LLMs overcome these limitations by integrating planning,
decision-making, memory, and tool-use capabilities, allowing them to execute
complex, multi-step tasks autonomously.

LLM Agents can autonomously research the internet, write and debug code,
summarize documents, and dynamically adjust their actions based on
intermediate results and real-time feedback.
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Paper’s Contributions

e Introduce CoScientist, an LLM based agent capable of autonomous design,
planning, and performance of scientific experiments.

e Inference based method that uses tools to augment pretrained LLMs.

o Applled on 6 tasks:

Planning chemical syntheses of known compounds using publicly available data

Efficiently searching and navigating through extensive hardware documentation

Using documentation to execute high-level commands in a cloud laboratory

Precisely controlling liquid handling instruments with low-level instructions

Tackling complex scientific tasks that demand simultaneous use of multiple hardware modules
and integration of diverse data sources

6. Solving optimization problems requiring analyses of previously collected experimental data

I e



Overview of CoScientist
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Documentation Search Module Implementation Details

e Used a vector database approach to search for relevant documentation.
e Steps for search for relevant documentation using vector database approach:

LN~

Chunk your documentation into appropriate sizes

Use a model like OpenAl’s ada to convert each chunk into an embeddings

To query, convert the query into an embedding

Find relevant documentation chunks by calculating the similarity between the query
embedding and chunk embedding using a distance based metric to assess similarity.



Documentation Search Module Implementation Details
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Experiments



Assessing Web Search Module Capabilities

Multiple language models were assessed to see how well they can serve as a
web searcher. (search-gpt-4, search-gpt-3.5-turbo, GPT-3.5, GPT-4, Claude

1.3, Falcon-40B-Instruct)
Test set was designed in which models were tasked with synthesizing seven

compounds.
Models scored between 1-5 in their ability to provide a detailed compound

synthesis.



Assessing Web Search Module Capabilities
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Assessing Web Search Module Capabilities

b
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Fig.2|Coscientist’s capabilities inchemical synthesis planning tasks. a, Comparison of various LLMs on compound synthesis benchmarks. Error bars
represents.d. values. b, Two examples of generated syntheses of nitroaniline. ¢, Two example of generated syntheses of ibuprofen. UV, ultraviolet.



Abilities in Controlling Laboratory Hardware

e The system’s ability was assessed through multiple experiments:

(@)

Simple plate-layout specific experiments like “color every other line with one color of your
choice”. Just requires control of a liquid handler to solve problem.

Tasks that involve the integration of multiple modules. For example, “In 3 wells of a 96-well
plate, three different colours are present—red, yellow and blue. Determine the colors and their
positions on the plate. This task requires both the liquid handler and UV-Vis plate reader to
solve the problem.



Abilities in Controlling Laboratory Hardware
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Integrated Chemical Experiment Design

e Test to see how well CoScientist can use all of its tools to perform catalytic
cross-coupling experiments.

e Performs the experiment in the following steps:

Uses internet to find appropriate reaction conditions and stoichiometries
Calculates required reagent volumes and generates hardware protocols
Successfully identifies and corrects errors in hardware module method names
Gas chromatography confirms formation of target products for both reactions
Shows reasoning capabilities about reagent selection and provides justifications

a0~



Key Takeaways

e Coscientist, powered by GPT-4, autonomously plans and executes chemical
experiments using tools like web search, code execution, and lab APIs.

e Has the ability to accurately perform complex tasks such as synthesis
planning, hardware control, and experiment automation with minimal human
input.

e \Validated through real-world experiments (e.g., Suzuki and Sonogashira
reactions), Coscientist showcases the potential of LLMs in accelerating
scientific discovery.
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Paper’s Contributions

« Introduce ChemCrow, a chemistry LLM agent built on GPT-4 to accomplish
tasks across organic synthesis, drug discovery, and materials design.

. Integrates 18 expert-designed tools spanning synthesis, safety, molecule
analysis, and more.

. Validated effectiveness via real-world synthesis of an insect repellent,
organocatalysts, and chromophore discovery.



Overview of ChemCrow

e LLM provided with a list of tools names, descriptions of their utility, and details
of expected input/output.

e Model is guided to follow Thought, Action, Action Input, and Observation
format to allow for chain-of-thought reasoning.

e By augmenting the model with tools, the aim is to transition the model from a
hyper-confident hallucinating model to a reasoning engine that reflects on a
task and uses tools to gather information.



Overview of ChemCrow

Expert-designed
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Tools Used for LLM Augmentation
« General Tools: Web search, Python REPL, LitSearch

« Molecule Tools: Name2SMILES, SMILES2Price, PatentCheck,
SMILES2Weight.

« Reaction Tools: ReactionPredict, SynthesisPlanner, ReactionExecute.

« Safety Tools: ControlledChemicalCheck, ExplosiveCheck, SafetySummary.



Experiments and
Results



Autonomous Chemical Synthesis

b Task: Find and synthesize a thiourea organocatalyst which € RoboRXN synthesis platform
accelerates a Diels-Alder reaction.

First, | need to find a thiourea organocatalyst that can accelerate
the Diels-Alder reaction. | will perform a web search to ind a
suitable catalyst.

Web Search tool: Schreiner’s thiourea catalyst

Now, | will obtain the SMILES. Name2Smiles tool:
FC(F)(F)c1ce(NC(=S)Nc2ce(C(F)(F)Flec{C{F N F)F )c2)ce(CIF) (F)F)et

I will plan a synthesis for Schreiner’s thiourea catalyst.
SynthesisPlanner tool: detailed synthesis plan

Connection with
I will execute the synthesis. physical world
SynthesisExecuter tool: successful synthesis. —_—

d ChemCrow workflows with experimental validation
Insect repellent (plan and execute) DEET

= O — Aoy

Thiourea organocatalysts (plan and execute)
Schreiner's catalyst Ricci's catalyst Takemoto's catalyst
r

. Ll )
r L "
Synthesis step 2: lodo Heck reaction
Fig.2 | Experimental validation. a, Example of the script run by auser to (pictures reprinted courtesy of International Business Machines Corporation).
initiate ChemCrow. b, Query and synthesis of a thiourea organocatalyst. c, IBM d, Experimentally validated compounds. Credit: photographsinc, IBM Research

Research RoboRXN synthesis platform on which the experiments were executed under a creative commons license CC BY-ND 2.0.



Human-Al Collaboration

Human chemist

Task input:

Here is some chromophore data.

« Clean the data.

« Use only data with acetonitrile as solvent.

« Preprocess the data.

» Train a random forest model to predict
absorption max wavelength of molecules.

« Then make predictions for the molecules

in a selection pool.

rinally, suggest a synt

Human-Al collaboration

ChemCrow
ChemCrow actions:

1. Check data rows to learn the format.

2. Filter data, solvent and relevant columns.

3. Calculate Morgan fingerprints and

split dataset into train/test.

4. Train and evaluate random forest model.
5. Propose molecule(s) from the selection pool.

Human actions:

« Synthesize proposed molecule.

« Confirm product using MS(ESI) and NMR.
« Analyse UV-Vis absorption spectrum.

1.6
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E 1.4 4 L
K. 1.2 4 ‘\_[_J,_r,_l
@ 1.04 e
2 08 R
2 06- In acetonitrile
_§ 0.4 1 «s= Measured maxamum
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0 4=y T T T T
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Wavelength (nm)

700

Synthesize methyl (E)-3-methyl-4-(2-(3'-
(methylsulfonamido)-[1,1-biphenyl]-4-
ylvinyl)benzoate with a predicted maximum
absorption wavelength closest to 369 nm. The
root mean squared error of the random forest
model is 37 nm.




Evaluation Across Diverse Chemical Use Cases

e Compared ChemCrow vs. GPT-4 across 14 tasks using expert and LLM
assessments.

e ChemCrow outperformed GPT-4 in chemical accuracy and task completion.
e GPT-4 responses were more fluent but often incorrect.

e Human experts preferred ChemCrow; LLM evaluators showed GPT-4 bias.



Evaluation Across Diverse Chemical Use Cases
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Key Takeaways

e ChemCrow transforms LLMs into practical chemistry agents by integrating 18 domain-specific tools that handle tasks like
reaction prediction, molecule modification, safety checks, and synthesis execution, going far beyond the capabilities of
standalone LLMs.

e The agent can autonomously perform complex experimental tasks such as synthesizing insect repellents and
organocatalysts, by planning multistep syntheses, adapting to errors in robotic platforms, and executing physical experiments
with no human intervention.

e ChemCrow supports meaningful human-Al collaboration, demonstrated through successful joint efforts like machine
learning-driven chromophore discovery—where the model cleaned data, trained a model, and proposed synthesis, while the
chemist validated the results.

e Evaluation by expert chemists shows ChemCrow outperforms GPT-4 on chemical accuracy, reasoning, and task
completion, especially on complex or novel problems that require real-world understanding and precise tool use.
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Paper’s Contributions

e Introduces the Monte Carlo Reasoner (MCR)—a method that augments large language
models with tree-based reasoning for scientific tasks like catalyst discovery.

e Develops a new chemistry-focused dataset—BioFuelQR—to evaluate LLM reasoning on
realistic chemical problems faced daily by scientists.

e Incorporates a domain-specific reward function (based on adsorption energy) to assess the
quality of LLM-generated catalysts.

e Achieves significant improvements over existing prompting techniques like
Chain-of-Thought (CoT) and Tree-of-Thought (ToT),



Problems With LLM Querying Currently

« Prompts like “What is a good catalyst for reaction X?” yield answers no better
than a search engine; they lack scientific depth and justification.

« Answers generated lack domain specificity and key technical terminology.

« There's a high risk of hallucinations, where the model fabricates confident but
incorrect information, undermining trust in its outputs.



Monte-Carlo Reasoner: Overview and Goal

« MCR is a zero-shot prompting strategy that guides LLMs to perform
structured reasoning for scientific tasks without additional model training.

o Uses Monte Carlo Tree Search (MCTS) to explore and expand prompts by
applying domain-inspired actions (e.g., adding constraints like low toxicity
or catalyst type)

o Each prompt P is a node in the tree.

« Each action a€ A modifies the prompt (e.g., add a constraint).

« Each edge (P,a) leads to a new prompt.

« The LLM'’s response to a prompt gives a reward R(P), which scores the
quality of the suggested catalysts.

o The search proceeds by simulating different prompt sequences and
updating estimates based on outcomes.

o Goalis to find prompt P°, which is the optimal prompt.

Q: What are the top-3 catalysts
for the reverse water gas
reaction? Let’s think step-by-
step...

A: Pt,Pd,Ru, Because...

Q: What are the top 3 catalysts
like Pt,Pd Au for the RWGS
reaction. Include catalysts with
[low cost].

A: Cu, Ni, Co. Because...

Q: Provide 3 metal oxide
catalysts that include Cu, Ni, Co
for the reverse water gas
reaction. Consider catalysts
with [low cost, high activity]

A: NiQ, NiCuO, C0,0,.
Because... o




Table 3: List of actions and their possibilities.

Action Possible Values # possible

Monte-Carlo Reasoner: Actions Type

Add Prop- | high activity, high selec- | 11
erty to In- | tivity, high stability, nov-
clude elty, low cost, low tox-
icity, high surface area,
high porosity, crystal
facet, availability

Add Prop- | low activity, low selec-| 9
erty to Ex- | tivity, low stability, high
clude cost, high toxicity, low
dispersion, low porosity,
high scarcity

Change unary catalyst, binary cat- | 4
Catalyst | alyst, trinary catalyst, cat-

Type alyst
Toggle on/off 1
Oxide

Change including elements that | 4
Relation are different from, in-
to Prev. | cluding elements similar
Answer to, introducing new ele-
ments to, including ele-
ments from

Repeat N/A 1
Prompt




Monte-Carlo Reasoner: Steps

1. Initialize the search tree

2. Simulate the tree search

2.1. Action Selection
2.2. Tree Expansion
2.3. Reward calculation

3. Find prompt with maximum reward



Monte-Carlo Reasoner: 1. Initialize the Search Tree

e We start of with providing our start prompt P . This prompt must be of the
form of “What are the top-k catalysts for...”

e This prompt will serve as the root of the tree root(T).



Monte-Carlo Reasoner: 2. Simulate the tree search

e \We now start the tree search loop. In each iteration of the loop we:
a. Traverse the tree using action selection

b. Expand the tree by adding a new leaf ( prompt P, )

c. Calculate the reward of the prompt P, and update downstream rewards V(P, a).

e \We repeat this tree search M times, where M is the number of candidate
prompts we want to generate.



Monte-Carlo Reasoner: 2.1. Traverse the Tree

e During each tree traversal we start at the root of the tree.
e \We decide which child node to go to using this UCB-like formula:

\/ZjN(P~aj))

1+N(P,a.i)

. IR V(P’al)+_ (P ¥
=Rl | N T P

Where:
e V(P,a;): cumulative reward for action a; at node P
e N(P,a;): number of times that action has been taken at that node
e p(P,a;): prior probability of the action (usually uniform)

e ¢: exploration—exploitation constant



Monte-Carlo Reasoner: 2.2. Expand the Tree

e \When we reach a leaf node after tree traversal, we expand the tree by adding
a new prompt P’ = a'(P,). Here a'is calculated by the UCB formula at the leaf
step.



Monte-Carlo Reasoner: 2.3. Reward Calculation

e Calculate reward for prompt P’ as:

R(P)= ) [LLM(a,C(P")
a<adsorbates
Where:
e C(P’) is the list of top-k catalysts from the LLM for prompt P’

e LLM(a,C(P’)): estimated adsorption energy between adsorbate a and each catalyst

e Higher reward = more effective catalysts (lower energy adsorption)

e Update all the cumulative rewards for all t using new reward:

V(P at) « V(Pyas) + 7'R(P')



Monte-Carlo Reasoner: 3. Find prompt With Maximum Reward

e Traverse through the tree after M steps and find node (prompt) with maximum
reward:

P=arg ax R(P)



Experiments



Baselines and Datasets

e Baselines:
o Chain of Thought (CoT): A reasoning approach where an LLM generates
step-by-step intermediate thoughts to arrive at a final answer.

o Self-Consistency CoT: An extension of CoT where multiple reasoning paths
are sampled and the most consistent answer is selected via majority voting.

o Tree of Thought (ToT): A structured reasoning framework where an LLM

explores multiple reasoning branches in a tree-like manner, evaluating and
expanding promising paths.

e Datasets: OpenCatalysis (adsorption focus) and BioFuelQR (biofuels reasoning).



Results

Table 1: Final catalyst suggestion results. /Np is number
of prompts evaluated and d,,,,, 1$ maximum search tree
depth. Values are averaged over evaluated examples.

OpenCatalysis BioFuelQR
Method Reward Np djars | Reward Np doox
CoT 2.04 | N/A 227 1 N/A
CoT w/ Self-consistency 4.04 10 N/A 6.38 10 N/A
ToT (breadth-first-search) 9.91 253 5 13.8 253 5
MCR (ours) 12.47 301 9.33 156 301 9.5




Key Takeaways

The paper introduces Monte Carlo Reasoner (MCR), a method that uses Monte
Carlo Tree Search (MCTS) to guide large language models (LLMs) in performing
complex scientific reasoning in catalyst design.

MCR significantly outperforms CoT, self-consistency CoT, and Tree-of-Thought
(ToT) approaches on two new benchmarks: OpenCatalysis and BioFuelQR, showing
up to 25.8% improvement in catalyst selection quality.

It incorporates a domain-specific reward function (adsorption energy estimates) to
guide the search toward more scientifically accurate and specific responses.



Questions?



