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Submit Pre-Lecture Questions via Google Form
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• https://docs.google.com/forms/d/e/1FAIpQLSdKAGdPP41dsKXylloWJCCFXWaNqobX-
u4DL7b5IIw2Yy2OBw/viewform?usp=dialog 

• Please submit questions for student lectures and guest lectures only

https://docs.google.com/forms/d/e/1FAIpQLSdKAGdPP41dsKXylloWJCCFXWaNqobX-u4DL7b5IIw2Yy2OBw/viewform?usp=dialog
https://docs.google.com/forms/d/e/1FAIpQLSdKAGdPP41dsKXylloWJCCFXWaNqobX-u4DL7b5IIw2Yy2OBw/viewform?usp=dialog


Submit Pre-Lecture Questions via Google Form
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• The first student lecture will be given by Yichen this Thursday.

• If you want to submit a question for Yichen’s lecture, the deadline is 11:59pm this 
Wednesday.

• We will have 10 student lectures + 3 guest lectures, and you only need to submit 5 
questions.



Scientific Papers
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• In previous lectures, we mainly 
utilize the text information 
(e.g., title, abstract, and full 
text) of scientific papers to 
train LLMs.

Title: BERT: Pre-training of Deep 
Bidirectional Transformers for 
Language Understanding
Abstract: We introduce a new 
language representation …

Title: SciBERT: A Pretrained 
Language Model for Scientific 
Text
Abstract: Obtaining large-scale 
annotated data for …

Title: OAG-BERT: Towards A 
Unified Backbone Language Model 
For Academic Knowledge Services
Abstract: Academic knowledge 
services have substantially …



Scientific Papers
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• In previous lectures, we mainly 
utilize the text information 
(e.g., title, abstract, and full 
text) of scientific papers to 
train LLMs.

• Scientific papers are not plain 
text sequences. They are 
associated with:

• Citation(s)

• Author(s)

• Venue

• …

Title: BERT: Pre-training of Deep 
Bidirectional Transformers for 
Language Understanding
Abstract: We introduce a new 
language representation …

Title: SciBERT: A Pretrained 
Language Model for Scientific 
Text
Abstract: Obtaining large-scale 
annotated data for …

Title: OAG-BERT: Towards A 
Unified Backbone Language Model 
For Academic Knowledge Services
Abstract: Academic knowledge 
services have substantially …

Today

3/18 & 3/25



Two Questions Related to Citations
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• Question 1: How to train an LLM to perform citation prediction?
• Question 2: Can citation information help an LLM with other tasks?

SPECTER [1] SciNCL [2] SPECTER 2.0 [3]

[1] SPECTER: Document-Level Representation Learning using Citation-Informed Transformers. ACL 2020.
[2] Neighborhood Contrastive Learning for Scientific Document Representations with Citation Embeddings. EMNLP 2022.
[3] SciRepEval: A Multi-Format Benchmark for Scientific Document Representations. EMNLP 2023.



Q1: How to train an LLM to perform citation prediction?
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• Step 1: Collect a large number of papers with citation information.

https://huggingface.co/datasets/allenai/scirepeval/viewer/cite_prediction 

https://huggingface.co/datasets/allenai/scirepeval/viewer/cite_prediction


Q1: How to train an LLM to perform citation prediction?
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• Step 1: Collect a large number of papers with citation information.
• Step 2: Train an LLM with such citation information.

Title: BERT: Pre-training of Deep 
Bidirectional Transformers for 
Language Understanding
Abstract: We introduce a new 
language representation …

Title: OAG-BERT: Towards A 
Unified Backbone Language Model 
For Academic Knowledge Services
Abstract: Academic knowledge 
services have substantially …

Encoder-Only Architecture Encoder-Only Architecture

Citation

[CLS] [CLS]

Two vectors should be close. Bi-Encoder



Q1: How to train an LLM to perform citation prediction?

9

• Step 1: Collect a large number of papers with citation information.
• Step 2: Train an LLM with such citation information.

Title: BERT: Pre-training of Deep 
Bidirectional Transformers for 
Language Understanding
Abstract: We introduce a new 
language representation …

Title: OAG-BERT: Towards A 
Unified Backbone Language Model 
For Academic Knowledge Services
Abstract: Academic knowledge 
services have substantially …

Encoder-Only Architecture

[CLS]

The predicted value of 
“cite” should be large.

Cross-Encoder

[CLS] [SEP] [SEP]

Binary Classification



Bi-Encoder vs. Cross-Encoder
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• Advantages of Cross-Encoder
• The idea is similar to the next sentence prediction task for pre-training 

BERT/SciBERT. If you start training your model from BERT/SciBERT, the 
model has had some citation prediction abilities at the beginning.

• Two papers can serve as context of each other, so that the model can learn a 
better contextualized representation of each token in the input sequence.

Paper 1

Encoder Encoder

Paper 2

Bi-Encoder

Paper 1

Encoder

Paper 2

Cross-Encoder



Bi-Encoder vs. Cross-Encoder
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• Advantages of Bi-Encoder
• More text information can be fed into the encoder.

• Assume one encoder can take at most N tokens. Bi-Encoder truncates 
each paper at its N-th token. Cross-Encoder truncates each paper text at 
its 0.5N-th token.

Paper 1

Encoder Encoder

Paper 2

Bi-Encoder

Paper 1

Encoder

Paper 2

Cross-Encoder



Bi-Encoder vs. Cross-Encoder
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• Advantages of Bi-Encoder
• Bi-Encoder is much more efficient during the inference time.

• Suppose you have 1,000 papers. How many times do you need to call the 
trained encoder to make pair-wise predictions?

• Bi-Encoder: 1,000
• Cross-Encoder: 1,000 × 1,000 = 1,000,000

Paper 1

Encoder Encoder

Paper 2

Bi-Encoder

Paper 1

Encoder

Paper 2

Cross-Encoder



Contrastive Learning

13

• SPECTER, SciNCL, and SPECTER 2.0 all use the Bi-Encoder architecture.

Paper 1

Encoder Encoder

Paper 2 Paper 3

Encoder

Citation

𝐡𝐡1 𝐡𝐡2

dist(𝐡𝐡1,𝐡𝐡2)

𝐡𝐡3

dist(𝐡𝐡1,𝐡𝐡3)<
Loss Function: minimize

max{dist(𝐡𝐡1,𝐡𝐡2)− dist(𝐡𝐡1,𝐡𝐡3) + 𝑚𝑚, 0}

Other Possible Choices: maximize
exp(cos(𝐡𝐡1,𝐡𝐡2))

exp cos(𝐡𝐡1,𝐡𝐡2) + exp(cos(𝐡𝐡1,𝐡𝐡3))
or

exp(𝐡𝐡1T𝐡𝐡2)
exp 𝐡𝐡1T𝐡𝐡2 + exp(𝐡𝐡1T𝐡𝐡3)



Hard Negative Samples – SPECTER 
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• We need to find challenging cases of “Paper 3” so that the model can be 
improved through contrastive learning.

• The strategy of SPECTER
• If Paper 1 cites Paper 2, and Paper 2 cites Paper 3, but Paper 1 does not cite 

Paper 3, then Paper 3 is a hard negative.

• Combination of easy and hard negatives: 60% easy + 40% hard

Paper 1 Paper 2 Paper 3

SPECTER: Document-Level Representation Learning using Citation-Informed Transformers. ACL 2020.



Hard Negative Samples – SciNCL 
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• SPECTER relies on 1 or 2 citation links to obtain positive/negative samples.
• How about a holistic view of the citation graph?

Neighborhood Contrastive Learning for Scientific Document Representations with Citation Embeddings. EMNLP 2022.

Mapping each node to 
a vector using graph 

information only



Hard Negative Samples – SciNCL 
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•       : query (Paper 1)
•       : easy positive (should NOT be 

used as Paper 2)
•       : hard positive (should be used as 

Paper 2)
• confusing area (should NOT be used 

as Paper 2 or Paper 3)
•       : hard negative (should be used as 

Paper 3)
•       : easy negative

Neighborhood Contrastive Learning for Scientific Document Representations with Citation Embeddings. EMNLP 2022.



More Details of SPECTER and SciNCL
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• Architecture: the same as BERT-base (12-layer Transformer encoders, 110M parameters)

• Pre-training Data: 676K triplets of (query, positive, negative)

• Continue pre-training SciBERT using contrastive learning only

SPECTER: Document-Level Representation Learning using Citation-Informed Transformers. ACL 2020.
Neighborhood Contrastive Learning for Scientific Document Representations with Citation Embeddings. EMNLP 2022.

https://huggingface.co/allenai/specter https://huggingface.co/malteos/scincl 

https://huggingface.co/allenai/specter
https://huggingface.co/malteos/scincl


Dataset for Evaluating SPECTER and SciNCL
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• The SciDocs benchmark

• Citation Prediction: Given a query paper and 30 candidate papers (5 cited by the 
query and 25 not cited by the query), rank all cited papers higher than all uncited 
ones.

https://github.com/allenai/scidocs 

https://github.com/allenai/scidocs


Q2: Can citation information help an LLM with other tasks?
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• The SciDocs benchmark

• Citation

• Co-Citation: Predict if two papers are frequently cited together.

• Co-View: Predict if two papers’ abstract pages (on Semantic Scholar) are frequently 
viewed in a single browsing session by users.

• Co-Read: Predict if two papers’ PDF pages (on Semantic Scholar) are frequently 
viewed in a single browsing session by users.

• Recommendation: On each paper’s abstract page, Semantic Scholar will show some 
similar papers. Predict which papers are more likely to be clicked by the user.



Q2: Can citation information help an LLM with other tasks?
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• The SciDocs benchmark

• “Proximity” Prediction: Citation, Co-Citation, Co-View, Co-Read, Recommendation

• Classification: MAG (19 classes), MeSH (11 classes)

• Train an SVM using labeled training data

MAG label space MeSH label space



Performance of SPECTER

21SPECTER: Document-Level Representation Learning using Citation-Informed Transformers. ACL 2020.



Performance of SciNCL

22Neighborhood Contrastive Learning for Scientific Document Representations with Citation Embeddings. EMNLP 2022.



More Experiments in the SPECTER Paper
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• What if we do not use any hard negative examples?

• Harmful!

• What if we feed venue or author information together with paper text into the 
encoder?

• Author names are consistently harmful (because the model is never trained to 
encode person names); venue names only help classification.

SPECTER: Document-Level Representation Learning using Citation-Informed Transformers. ACL 2020.



Take-Away Messages
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• Citation prediction complements masked language modeling in scientific LLM pre-
training. It helps downstream tasks including not only citation prediction but also 
classification and other types of “proximity” prediction.

• Hard negatives/positives are important in contrastive learning.

• Unsolved issues

• How to better utilize venue and author information? OAG-BERT: Towards a Unified 
Backbone Language Model for Academic Knowledge Services. KDD 2022.

• All examined tasks focus on the representation of the entire paper. Can SPECTER 
and SciNCL outperform SciBERT in named entity recognition? Why (not)?



Two Questions Related to Citations
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• Question 1 (enhanced version): How to train an LLM to perform multiple tasks 
(e.g., citation prediction and classification) simultaneously?

• Question 2 (enhanced version): Can these tasks help an LLM with unseen tasks?

SPECTER [1] SciNCL [2] SPECTER 2.0 [3]

[1] SPECTER: Document-Level Representation Learning using Citation-Informed Transformers. ACL 2020.
[2] Neighborhood Contrastive Learning for Scientific Document Representations with Citation Embeddings. EMNLP 2022.
[3] SciRepEval: A Multi-Format Benchmark for Scientific Document Representations. EMNLP 2023.



Pre-training Data of SPECTER 2.0 – SciRepEval 

26SciRepEval: A Multi-Format Benchmark for Scientific Document Representations. EMNLP 2023.

https://huggingface.co/datasets/allenai/scirepeval 

https://huggingface.co/datasets/allenai/scirepeval


Pre-training Data of SPECTER 2.0 – SciRepEval 
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• 4 types of tasks

• Classification (CLF): predict the MeSH or MAG labels of a paper

• Regression (RGN): predict the citation count or the publication year of a paper

• “Proximity” Prediction (PRX)

• Citation Prediction: predict if one paper cites the other

• Highly Influential Citation Prediction: predict if one paper frequently cites the 
other in its text

• Same Author Detection: predict if two papers are written by the same author

• Search (SRCH): given a query and a list of papers, predict which papers are relevant 
to the query (derived from Semantic Scholar search logs)



How to pre-train an LLM with multiple tasks?
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• Vanilla version

Paper A

Encoder

Classification

[CLS]

Arts: 0.32, 
Biology: 0.01, 

… 

Paper B

Encoder

Regression

[CLS]

Year: 2020

Paper C

Encoder Encoder

Paper D

Proximity

[CLS] [CLS]

Cite

Query

Encoder Encoder

Paper E

Search

[CLS] [CLS]

Relevant



How to pre-train an LLM with multiple tasks?
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• Trick 1: Control Codes

Paper A

Encoder

Classification

[CLF]

Arts: 0.32, 
Biology: 0.01, 

… 

Paper B

Encoder

Regression

[RGN]

Year: 2020

C

Encoder Encoder

D

Proximity

[PRX] [PRX]

Cite

Q

Encoder Encoder

E

Search

[QRY] [PRX]

Relevant

[CLF] [RGN] [PRX] [PRX] [PRX][QRY]



How to pre-train an LLM with multiple tasks?
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• Trick 1: Control Codes

Motivation: You need 
different embedding spaces 
when performing different 

downstream tasks.



How to pre-train an LLM with multiple tasks?
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• Trick 1: Control Codes - All tasks share the same architecture. 
We get different embeddings of a paper by slightly changing the 
input. 

• Trick 2: Adapters - Different tasks have their shared 
parameters and task-specific parameters.

• Shared parameters: Multi-Head Attention and Feed 
Forward; representing task commonality

• Task-specific parameters: Adapter; representing task 
specificity

• If the model is performing classification, the data will 
go through the “classification” adapter.

Parameter-Efficient Transfer Learning for NLP. ICML 2019.
AdapterFusion: Non-Destructive Task Composition for Transfer Learning. EACL 2021.



More Details of SPECTER 2.0
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• Architecture: 12-layer × (Transformer + Adapters), 113M parameters

• Continue pre-training SciBERT using classification, regression, proximity prediction, and 
search

SciRepEval: A Multi-Format Benchmark for Scientific Document Representations. EMNLP 2023.

https://huggingface.co/allenai/specter2 

https://huggingface.co/allenai/specter2


Tasks for Evaluating SPECTER 2.0
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• “In-train” tasks

SciRepEval: A Multi-Format Benchmark for Scientific Document Representations. EMNLP 2023.



Tasks for Evaluating SPECTER 2.0
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• “Out-of-train” tasks

SciRepEval: A Multi-Format Benchmark for Scientific Document Representations. EMNLP 2023.



Tasks for Evaluating SPECTER 2.0
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• “Out-of-train” tasks

• Classification

• Biomimicry: predict if a paper is related to biomimicry

• DRSM: predict which aspect of rare diseases a paper deals with (6 aspects in 
total) 

• Regression

• Peer Review Score: predict the average score each ICLR submission gets 
(between 1 and 10)

• h-Index of Authors: given a paper, predict the maximum h-index of any of the 
authors

• Tweet Mentions: given a paper, predict how many times it is mentioned and 
retweeted



Tasks for Evaluating SPECTER 2.0
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• “Out-of-train” tasks

• Proximity Prediction

• S2AND (Author Name Disambiguation): given many papers written by many 
authors with the same name, cluster the papers according to their authors

• Paper-Reviewer Matching: given a submission and a list of candidate reviewers 
(with their previously published papers), rank the reviewers according to their 
expertise to review the submission

• Search

• NFCorpus: given a query and a list of papers (about nutrition facts), rank the 
papers according to their relevance to the query

• TREC-COVID: given a query and a list of papers (about COVID-19), rank the 
papers according to their relevance to the query



Performance of SPECTER 2.0

37SciRepEval: A Multi-Format Benchmark for Scientific Document Representations. EMNLP 2023.

Using [CLS] Only
Using Control Codes

Variant of Adapters
Variant of Adapters

Using Adapters

Using Adapters + 
Control Codes



Take-Away Messages
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• Pre-training an LLM using multiple tasks (e.g., classification, regression, citation 
prediction, search) makes it perform better in both in-train and out-of-train tasks.

• The motivation is similar to instruction tuning!

• When performing different tasks, it is better to generate different embeddings for the 
same text.

• Control codes: shared architecture + task-specific inputs

• Adapters: partially shared + partially task-specific architecture



Take-Away Messages
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• Drawback:

• What if we have an entirely new task without training data?

• We have to choose an existing adapter or an existing code to perform this task.

• Invent a new control code? Control codes are not natural language instructions. 
The model can hardly understand it.

• Use natural language instructions to replace control codes during pre-training?

• Instruction tuning + encoder-only architectures

• Task-aware Retrieval with Instructions. ACL 2023 Findings.

• Pre-training Multi-task Contrastive Learning Models for Scientific Literature 
Understanding. EMNLP 2023 Findings.



What can decoder architectures do with citation information?
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• Given two papers (one citing the other), explain the relationship between them.

• A generative version of citation intent prediction.

Explaining Relationships Between Scientific Documents. ACL 2021.



How to collect data?

41

Principal 
Paper

Cited 
Paper

Anchor
Sentence

https://github.com/allenai/s2orc 
title, abstract, full text, citations, anchor sentences, …

https://github.com/allenai/s2orc


Roadmap to the Model

42

• Step 1: Continue pre-training GPT-2 using unsupervised next token prediction on a large 
scientific paper corpus



Roadmap to the Model
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• Step 1: Continue pre-training GPT-2 using unsupervised next token prediction on a large 
scientific paper corpus

• Step 2: Supervised fine-tuning

Principal 
Paper

Cited 
Paper

[SEP] Decoder
Anchor

Sentence



More Details of SciGEN
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• Architecture: the same as GPT-2-base (12-layer Transformer decoders, 117M 
parameters)

• Fine-tuning Data: 622K triplets of (principal paper, cited paper, anchor sentence)

https://github.com/Kel-Lu/SciGen 

https://github.com/Kel-Lu/SciGen


Performance of SciGEN
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Anchor
Sentence

Explaining Relationships Between Scientific Documents. ACL 2021.



Take-Away Messages
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• Citations are associated with text information (i.e., anchor sentences), making them 
beyond edges in a graph.

• Such text information can help explain document relationships.

• Keywords extracted by TF-IDF scores are more useful than the abstract/introduction 
when representing the cited paper as input to the model.

• Is this observation still true for GPT-3 or even stronger LLMs?

• Drawback

• Evaluation metrics include BLEU and ROUGE only, which are based on word 
overlaps between the generated text and the ground-truth text.

• BERTScore: Evaluating Text Generation with BERT. ICLR 2020.

• GPTScore: Evaluate as You Desire. NAACL 2024.



Thank You!
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Course Website: https://yuzhang-teaching.github.io/CSCE689-S25.html 

https://yuzhang-teaching.github.io/CSCE689-S25.html
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