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Scientific Literature Retrieval
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How to train an LLM to perform scientific literature retrieval?
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• Step 1: Collect a large number of relevant (query, paper) pairs.
• Step 2: Train an LLM with such information (e.g., using contrastive learning).

Title: Clinical features of patients 
infected with 2019 novel 
coronavirus in Wuhan, China
Abstract: Background: A recent 
cluster of pneumonia cases …

Query: Cardiac injury is common in 
critical cases of COVID-19.

Encoder-Only Architecture Encoder-Only Architecture

Relevant

[CLS] [CLS]

Two vectors should be close. Bi-Encoder



How to train an LLM to perform scientific literature retrieval?
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• Step 1: Collect a large number of relevant (query, paper) pairs.
• Step 2: Train an LLM with such information (e.g., using contrastive learning).

Title: Clinical features of patients 
infected with 2019 novel 
coronavirus in Wuhan, China
Abstract: Background: A recent 
cluster of pneumonia cases …

Query: Cardiac injury is common in 
critical cases of COVID-19.

Encoder-Only Architecture
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The predicted value of 
“relevant” should be large.

Cross-Encoder
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How to train an LLM to perform scientific literature retrieval?
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• Step 1: Collect a large number of relevant (query, paper) pairs.
• How?

• Unlike citation information that can be crawled from the academic databases 
or the Web, relevant (query, paper) pairs need to be derived from either 
user click-through data or human annotations.

• User click-through data are proprietary.
• Human annotations cannot be scaled up.



Agenda
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• Contrastive Learning with Ground-Truth Search Logs
• MedCPT: Bi-Encoder → Cross-Encoder

• Contrastive Learning with Data from Other Tasks
• SciMult: Mixture-of-Experts Transformer
• BMRetriever: Instruction Tuning

• Application
• SciFact: Scientific Claim Verification
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PubMed Search Logs
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• User click-through data from 2020 to 2022

• A user inputted a query.

• 20 papers were displayed on the result page.

• The user clicked paper 1, 6, and 8.

• Papers relevant to the query: 1, 6, 8

• Papers irrelevant to the query: 2, 3, 4, 5, 7

• Papers cannot be judged as relevant/irrelevant: 9, 10, …, 20

• 255M relevant (query, paper) pairs

• Most of such queries are short keywords, and matching them to the clicked articles is a 
relatively simple task.

• 18M semantically relevant (query, paper) pairs

• Remove queries either having only one word or all of the clicked articles containing exact 
mentions of the whole input query 



The MedCPT Framework

9

• Bi-Encoder for retrieval (from a large candidate pool)

• Cross-Encoder for re-ranking (the retrieved papers)

MedCPT: Contrastive Pre-trained Transformers with Large-scale PubMed Search Logs for Zero-shot Biomedical Information Retrieval. 
Bioinformatics 2023.



Recap: Bi-Encoder vs. Cross-Encoder
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• Bi-Encoder is much more efficient during the inference time.

• If we use Cross-Encoder, the query and the paper can serve as context of each other, so 
that the model can learn a better contextualized representation of each token in the 
input sequence.

• MedCPT: Using Bi-Encoder to remove most (e.g., 99%) of the candidates, and using 
Cross-Encoder to more carefully rank the remaining candidates (e.g., 1%).

Query

Encoder Encoder

Paper

Bi-Encoder

Query

Encoder

Paper

Cross-Encoder



Bi-Encoder Contrastive Learning
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In-Batch Negative Sampling
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• Paper 2 is relevant to Query 2, but its relevance to Query 1 is unknown.

Query 1

Encoder Encoder

Paper 1 Paper 2

Encoder

Relevant

𝐡𝐡𝑞𝑞𝑞 𝐡𝐡𝑝𝑝𝑝

𝐡𝐡𝑞𝑞1T 𝐡𝐡𝑝𝑝𝑝

𝐡𝐡𝑝𝑝𝑝

𝐡𝐡𝑞𝑞1T 𝐡𝐡𝑝𝑝2>

Paper 3

Encoder

𝐡𝐡𝑝𝑝𝑝

Paper 4

Encoder

𝐡𝐡𝑝𝑝𝑝

𝐡𝐡𝑞𝑞1T 𝐡𝐡𝑝𝑝3 𝐡𝐡𝑞𝑞1T 𝐡𝐡𝑝𝑝4

Objective Function: maximize
exp(𝐡𝐡𝑞𝑞1T 𝐡𝐡𝑝𝑝𝑝)

exp 𝐡𝐡𝑞𝑞𝑞T 𝐡𝐡𝑝𝑝𝑝 + exp 𝐡𝐡𝑞𝑞𝑞T 𝐡𝐡𝑝𝑝2 + exp 𝐡𝐡𝑞𝑞𝑞T 𝐡𝐡𝑝𝑝3 + exp(𝐡𝐡𝑞𝑞𝑞T 𝐡𝐡𝑝𝑝4)



Cross-Encoder Contrastive Learning
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Using trained Bi-Encoder to 
derive hard negatives



Evaluation of MedCPT
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• The BEIR benchmark

• https://github.com/beir-
cellar/beir  

BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information Retrieval Models. NeurIPS 2021.

https://github.com/beir-cellar/beir
https://github.com/beir-cellar/beir


Performance of MedCPT: Query-Paper Relevance

15



Performance of MedCPT: Paper-Paper and Query-Query Relevance
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Evaluating relevance between papers Evaluating relevance between short sentences



Take-Away Messages
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• Contrastive learning with user click-through data makes small, domain-specific LMs 
outperform large, general LMs.

• The retrieval→re-ranking framework uses Bi-Encoder to filter out most (e.g., 99%) of 
the candidates, and using Cross-Encoder to more carefully rank the remaining 
candidates (e.g., 1%).

• “Get the best of both worlds” by utilizing the advantages of Bi-Encoder and Cross-
Encoder

• Limitation:

• Strong reliance on proprietary data

• Most researchers do not have access to search logs.



Agenda
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Harvesting Other Types of Relevant (Text, Text) Pairs
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Relevant (Paper, Label) Pairs

Relevant (Paper, Paper) Pairs

Relevant (Query, Paper) Pairs

• Combine all these pairs together for contrastive learning?

• Task Interference: The model is confused by different types of “relevance”.



An Illustrative Example of Task Interference
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• Recall the link prediction problem

• Imagine that predicting each type of “links” 
is a “task” 

• Citation Prediction: Paper→Paper

• Same Author Prediction: Paper-Author-
Paper

• Each type of “links” defines one type of 
“relevance”.

• Directly merging the relevant (paper, paper) 
pairs induced by different link types?

• The model will be confused!

(Doc3, Doc2) are relevant according to 
Paper→Paper but irrelevant according to 

Paper-Author-Paper.



Tackling Task Interference: Mixture-of-Experts Transformer

• A typical Transformer layer

• 1 Multi-Head Attention (MHA) sublayer

• 1 Feed Forward Network (FFN) sublayer

• A Mixture-of-Experts (MoE) Transformer layer

• Multiple MHA sublayers

• 1 FFN sublayer

• (Or 1 MHA & Multiple FFN)

• Specializing some parts of the architecture to be 
an “expert” of one task

• The model can learn both commonalities and 
characteristics of different tasks.
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Pre-training Multi-task Contrastive Learning Models for Scientific Literature Understanding. EMNLP 2023 Findings.



Tackling Task Interference: Mixture-of-Experts Transformer

Task

22

Structured 
Information

Field



Tackling Task Interference: Instruction Tuning

• Using a factor-specific 
instruction to guide 
the paper encoding 
process

• The instruction serves 
as the context of the 
paper.

• The paper does NOT 
serve as the context of 
the instruction.

23Pre-training Multi-task Contrastive Learning Models for Scientific Literature Understanding. EMNLP 2023 Findings.



Evaluations of SciMult
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• For Search, both the retrieval and the re-ranking settings are evaluated.



Performance of SciMult: Search
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Performance of SciMult: Classification
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Performance of SciMult: Link Prediction
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PMC-Patients Leaderboard

• Given a patient summary, find the most relevant papers.

A Large-Scale Dataset of Patient Summaries for Retrieval-Based Clinical Decision Support Systems. Scientific Data 2023.

https://pmc-patients.github.io 
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https://pmc-patients.github.io/
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Getting Relevant (Text, Text) Pairs from One Paper 
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• For corpora with titles, treat the title as 
the query and the corresponding 
abstract as the passage.

• For untitled corpora, randomly sample 
two disjoint passages from documents, 
using one as the query and the other as 
the passage.

BMRetriever: Tuning Large Language Models as Better Biomedical Text Retrievers. EMNLP 2024.



Getting Relevant (Text, Text) Pairs from LLMs
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Relevant

BMRetriever: Tuning Large Language Models as Better Biomedical Text Retrievers. EMNLP 2024.



Getting Relevant (Text, Text) Pairs from Other Tasks
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• Instruction Tuning

BMRetriever: Tuning Large Language Models as Better Biomedical Text Retrievers. EMNLP 2024.



Generalize to Unseen Retrieval Tasks

33BMRetriever: Tuning Large Language Models as Better Biomedical Text Retrievers. EMNLP 2024.



Performance of BMRetriever: Paper Retrieval
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Performance of BMRetriever: QA, Entity Linking & Recommendation
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Take-Away Messages
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• If you cannot access proprietary search logs but still need to train a retrieval model, get 
relevant (text, text) pairs from:

• Other tasks (e.g., classification, citation prediction, question answering)

• Different paragraphs in one document

• LLMs

• Directly merging all these data together for contrastive learning suffers from task 
interference. Solutions include:

• Mixture-of-Experts Transformers

• Instruction Tuning



A Summary of Advanced Techniques Introduced in Recent Lectures
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Parameter-Efficient 
Fine-Tuning (PEFT):
Only tune a small 

number of 
parameters in LLMs 

LoRA [ICLR 2022]

Adapter [EACL 2021]

Prefix Tuning [ACL 2021]

Mixture-of-Experts [ICML 2022]

Instruction Tuning [ICLR 2022]

What if we tune the 
entire model?

What if we tune the 
entire model?
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Scientific Claim Verification
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• Given a scientific claim:

• Step 1 (Relevant Paper 
Retrieval): Find all papers 
relevant to this claim.

• Step 2 (Rationale Sentence 
Selection): In each relevant 
paper, find relevant 
sentences.

• Step 3 (Stance Prediction): 
Based on the relevant 
sentences, predict if the 
paper supports, refutes, or is 
neutral towards the claim.

Fact or Fiction: Verifying Scientific Claims. EMNLP 2020.



Dataset Construction
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• Data source: S2ORC

• Annotators write claims based on 
citation sentences.



Framework
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• Task 1 (Relevant Paper Retrieval)

• Any retrieval model

• Task 2 (Rationale Sentence Selection)

• For each sentence 𝑠𝑠 in a relevant paper, perform binary classification (rationale 
sentence / not rationale sentence)

• [CLS] claim [SEP] 𝑠𝑠 [SEP]

• Task 3 (Stance Prediction)

• Combine all rationale sentences together and perform three-class classification 
(support/refute/neutral)

• [CLS] claim [SEP] rationale1 rationale2 … rationale [SEP]



Performance of Each Task
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End-to-End Performance
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Case Studies
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Take-Away Messages
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• The ideas and techniques used in scientific paper retrieval can be generalized to a wide 
spectrum of scientific text mining tasks aiming to predict the semantic similarity 
between two text units, including different steps in scientific claim verification.

• Drawback

• Not an end-to-end framework. Errors in rationale selection will propagate to stance 
prediction. (If you miss some rationale sentences, you loss some information in 
stance prediction.)

• Can we merge these two steps? (e.g., [CLS] claim [SEP] entire paper [SEP])

• MultiVerS: Improving Scientific Claim Verification with Weak Supervision and Full-Document 
Context. NAACL 2022 Findings.



Thank You!
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