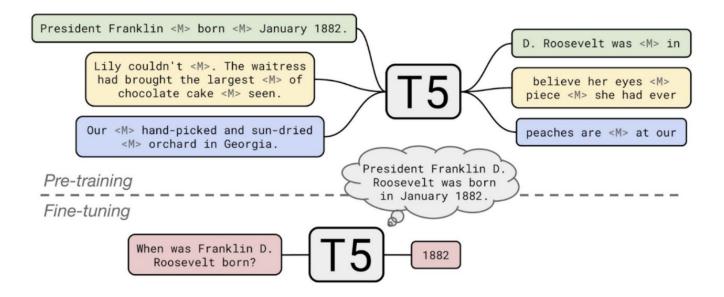
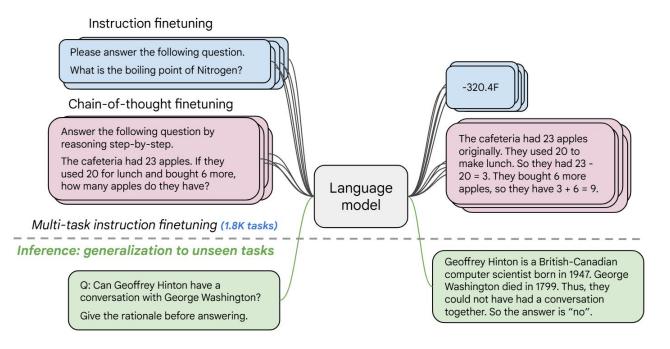
CSCE 689 - Special Topics in NLP for Science

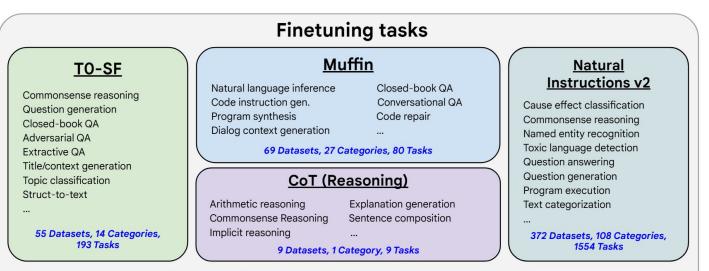

Scientific VLMs: Geometry

Shuo Xing

February 13, 2025

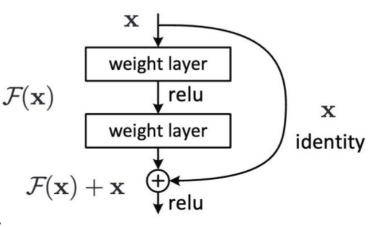

Preliminaries: T5

- T5: Text-to-Text Transfer Transformer
- Pre-training: Mask out spans of texts; generate the original spans
- Fine-tuning: Convert every task into a sequence-to-sequence generation problem


Preliminaries: FLAN-T5

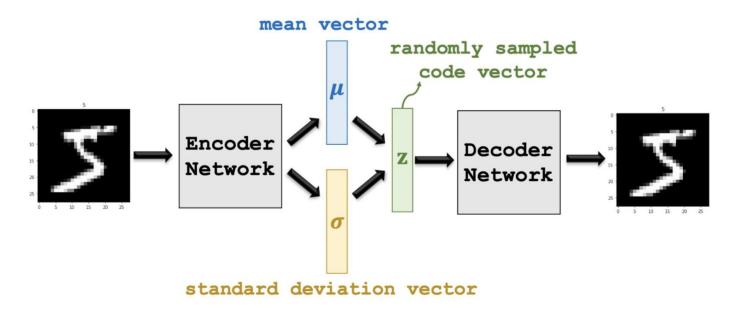
Finetuning T5 on a collection of datasets phrased as *instructions* to improve model performance and generalization to unseen tasks

Preliminaries: FLAN-T5


Finetuning data comprises 473 datasets, 146 task categories, and 1,836 total tasks

- A **<u>Dataset</u>** is an original data source (e.g. SQuAD).
- A <u>Task Category</u> is unique task setup (e.g. the SQuAD dataset is configurable for multiple task categories such as extractive question answering, query generation, and context generation).
- A <u>Task</u> is a unique <dataset, task category> pair, with any number of templates which preserve the task category (e.g. query generation on the SQuAD dataset.)

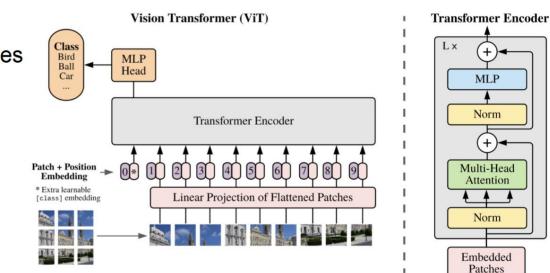
Preliminaries: Residual Block


- . Let weight layers fit residual function F(x)
- . Let F(x) + x be the subnet output
- . If identity is near-optimal
 - push weights to small
 - encourage small changes
- Initialize with small or
 - zero weights

Deep Residual Learning for Image Recognition. CVPR 2016

Preliminaries: VQ-VAE

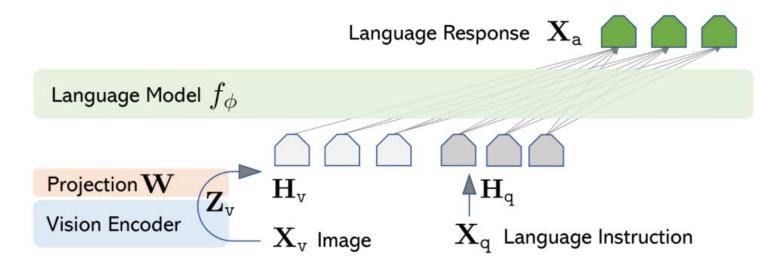
Variational Autoencoder with *discrete latent space*



Neural Discrete Representation Learning. NeurIPS 2017

Preliminaries: ViT

Vision Transformer (ViT)


- . Patchify images
- 1D processing of patches (same to NLP transformers)
- Apply self-attention layers to process the patch embedding

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. ICLR 2021

Preliminaries: VLMs

Incorporating *vision encoders* to process image patches into tokens and aligning them with the *text token space* of LLMs

Visual Instruction Tuning. NeurIPS 2023 (Oral)

Agenda

- UniMath: A Foundational and Multimodal Mathematical Reasoner
- G-LLaVA: Solving Geometric Problem with Multi-Modal Large Language
 Model
- Math-LLaVA: Bootstrapping Mathematical Reasoning for Multimodal Large Language Models

Agenda

- UniMath: A Foundational and Multimodal Mathematical Reasoner
- G-LLaVA: Solving Geometric Problem with Multi-Modal Large Language
 Model
- Math-LLaVA: Bootstrapping Mathematical Reasoning for Multimodal Large Language Models

Mathematical Modalities

Math word problems (MWP):

textual information and execution of *symbolic reasoning*

Text2Text

PROBLEM:

Text: Jack had 8 pens and Mary had 5 pens. Jack gave 3 pens to Mary. How many pens does Jack have now? Equation: 8 - 3 = 5

QUESTION SENSITIVITY VARIATION:

Text: Jack had 8 pens and Mary had 5 pens. Jack gave 3 pens to Mary. How many pens does Mary have now? Equation: 5 + 3 = 8

REASONING ABILITY VARIATION:

Text: Jack had 8 pens and Mary had 5 pens. Mary gave 3 pens to Jack. How many pens does Jack have now? Equation: 8 + 3 = 11

STRUCTURAL INVARIANCE VARIATION: Text: Jack gave 3 pens to Mary. If Jack had 8 pens and Mary had 5 pens initially, how many pens does Jack have now?

Equation: 8 - 3 = 5

Mathematical Modalities

Geometry problem-solving:

visual context and reasoning on spatial relations

Image2Text: require image encoder

С

Ε

As shown in the figure, in \odot O, AB is the chord, OC \perp AB, if the radius of \odot O is 5 (NO) and CE=2 (N1), then the length of AB is ()

```
A. 2 B. 4 C. 6 D. 8

Answer: D. 8

Problem Type: Length Calculation

Knowledge Points: Vertical Diameter, Pythagorean Theorem

Problem Solving Explanations:
```

OE=OC-CE=5-2=3. According to the Pythagorean Theorem,

AE = $\sqrt{OA^2 - OE^2} = \sqrt{5^2 - 3^2} = 4$. Thus, AB=2AE=8.

Annotated Programs:

Minus | N0 | N1 | PythagoreanMinus | N0 | V0 | Double | V1

```
Step1: Minus(N0, N1) = 5 - 2 = 3 (V0)
```

Step2: PythagoreanMinus(N0, V0) = $\sqrt{5^2 - 3^2}$ = 4 (V1)

Step3: Double(V1) = 2×4 = 8 (V2)

GeoQA: A Geometric Question Answering Benchmark Towards Multimodal Numerical Reasoning. Findings of ACL 2021 *Dynamic Prompt Learning via Policy Gradient for Semi-structured Mathematical Reasoning. ICLR 2023*

Mathematical Modalities

Table based math problem-solving: processing structured table content to extract relevant information for problem-solving

square beads	\$2.97 per kilogram
oval beads	\$3.41 per kilogram
flower-shaped beads	\$2.18 per kilogram
star-shaped beads	\$1.95 per kilogram
heart-shaped beads	\$1.52 per kilogram
spherical beads	\$3.42 per kilogram
rectangular beads	\$1.97 per kilogram

transform tables into texts

Shop	Tuna	Egg salad
City Cafe	6	5
Sandwich City	3	12
Express Sandwiches	7	17
Sam's Sandwich Shop	1	6
Kelly's Subs	3	4

Question: If Tracy buys 5 kilograms of spherical beads, 4 kilograms of
star-shaped beads, and 3 kilograms of flower-shaped beads, how much
will she spend? (unit: \$)
Answer: 31.44
Solution:
Find the cost of the spherical beads. Multiply: $3.42 \times 5 = 17.10$.
Find the cost of the star-shaped beads. Multiply: $1.95 \times 4 = 7.80$.
Find the cost of the flower-shaped beads. Multiply: $$2.18 \times 3 = 6.54 .
Now find the total cost by adding: $17.10 + 7.80 + 6.54 = 31.44$.
She will spend \$31.44.

Question: As part of a project for health class, Cara surveyed local delis
about the kinds of sandwiches sold. Which shop sold fewer sandwiches,
Sandwich City or Express Sandwiches?
Options: (A) Sandwich City (B) Express Sandwiches
Answer: (A) Sandwich City
Solution:
Add the numbers in the Sandwich City row. Then, add the numbers in
the Express Sandwiches row.
Sandwich City: $3 + 12 = 15$. Express Sandwiches: $7 + 17 = 24$.
15 is less than 24. Sandwich City sold fewer sandwiches.

Dynamic Prompt Learning via Policy Gradient for Semi-structured Mathematical Reasoning. ICLR 2023

Mathematical Modalities

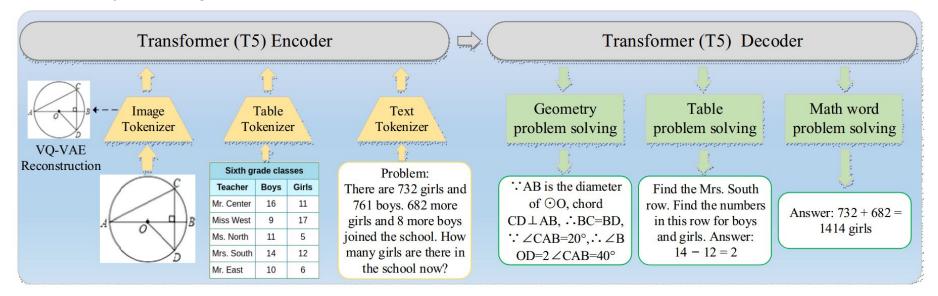
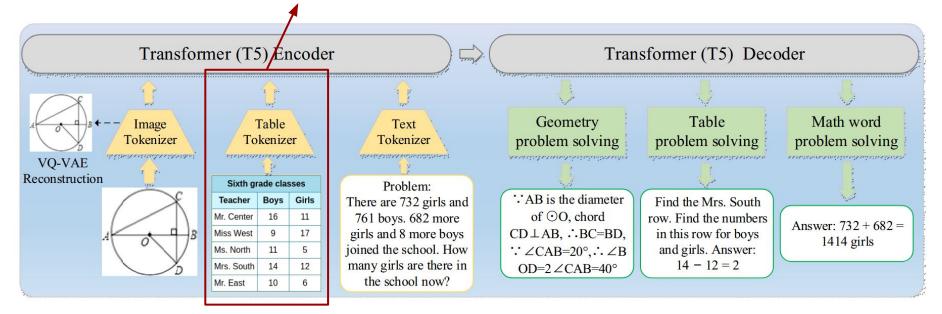

The semi-structured format is created by converting the raw table text into a *flattened token sequence*

Image format Field day schedule			Semi-structured format Table title: Field day schedule		Structured format Table title: Field day schedule Event Begin End			
		,						
Event	Begin	End	Table text:	10000		•		
water balloon toss	11:30 A.M.	11:50 A.M.	Event Begin End	0	water balloon toss	11:30 A.M.	11:50 A.M.	
obstacle course	12:05 P.M.	12:25 P.M.	water balloon toss 11:30 A.M. 11:50 A.M.	1	obstacle course	12:05 P.M.	12:25 P.M.	
parachute ball toss	12:30 P.M.	1:30 P.M.	obstacle course 12:05 P.M. 12:25 P.M.	2	parachute ball toss	12:30 P.M.	1:30 P.M.	
jump rope race	1:40 P.M.	2:05 P.M.	parachute ball toss 12:30 P.M. 1:30 P.M.	3	jump rope race	1:40 P.M.	2:05 P.M.	
balloon stomp	2:15 P.M.	2:35 P.M.	jump rope race 1:40 P.M. 2:05 P.M.	4	balloon stomp	2:15 P.M.	2:35 P.M.	
relay race	2:50 P.M.	3:40 P.M.	balloon stomp 2:15 P.M. 2:35 P.M.	5	relay race	2:50 P.M.	3:40 P.M.	
hula hoop contest	3:55 P.M.	4:30 P.M.						
potato sack race	4:40 P.M.	5:15 P.M.	relay race 2:50 P.M. 3:40 P.M.	6	hula hoop contest	3:55 P.M.	4:30 P.M.	
•			hula hoop contest 3:55 P.M. 4:30 P.M.	7	potato sack race	4:40 P.M.	5:15 P.M.	

UniMath

A unified system designed for multimodal mathematical reasoning tasks


Jointly training the model on three datasets - SVAMP, GeoQA, and TableMWP

Textual tokes are discrete UniMath 2-layer ResBlocks VQ-VAE as image encoder to transform image patches to new tokens and concatenate them with the textual tokens as the input. Transformer (T5) Encoder Transformer (T5) Decoder 7777 Table Math word Geometry Image Table Text Tokenizer Tokenizer Tokenizer problem solving problem solving problem solving man management very gamer gamer gamer eren and a second and a second **VO-VAE** Reconstruction Sixth grade classes Problem: : AB is the diameter Teacher Boys Girls There are 732 girls and Find the Mrs. South of $\bigcirc O$, chord Mr. Center 16 761 boys. 682 more row. Find the numbers 11 Answer: 732 + 682 =Miss West 9 17 girls and 8 more boys $CD \perp AB, \therefore BC=BD,$ in this row for boys 1414 girls joined the school. How and girls. Answer: Ms. North 11 5 $\therefore \angle CAB = 20^\circ, \therefore \angle B$ many girls are there in 14 - 12 = 2Mrs. South 14 12 OD=2∠CAB=40° the school now? Mr. East 10 6

UniMath Generated by Chain-of-Thought

The **explanation** and **answer** of the TableMWP dataset are separated into two targets during training controlled by different prefixes.

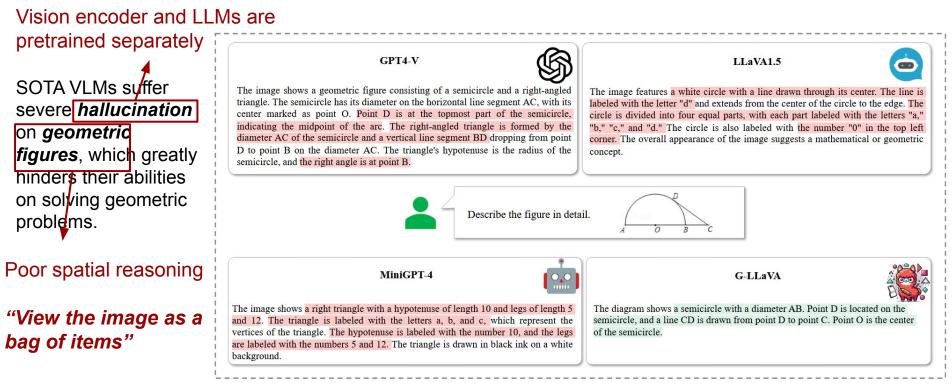
UniMath

• Effective unified mathematical reasoner with very competitive accuracy against state-of-the-art baselines

	Held-in Tasks			Held-out Tasks		
	SVAMP	GeoQA	TableMWP	MathQA	UniGeo-Proving	
Best Fine-tuned Baseline	47.3^{a}	46.8^{b*}	58.5^{c}	78.6^{a}	80.6 ^{b*}	
Train Individually on T5-base	29.8	43.7	62.7	82.3	82.7	
Train Individually on Flan-T5-base	30.5	45.1	64.5	82.0	83.0	
UniMath-T5-base	37.3	49.6	65.4	83.3	82.9	
UniMath-Flan-T5-base	41.8	50.0	66.5	82.7	83.0	

UniMath

• Able to generalize and help improve the fine-tuning on held-out tasks


	Held-in Tasks			Held-out Tasks		
	SVAMP	GeoQA	TableMWP	MathQA	UniGeo-Proving	
Best Fine-tuned Baseline	47.3^{a}	46.8^{b*}	58.5^{c}	78.6^{a}	80.6 ^{b*}	
Train Individually on T5-base	29.8	43.7	62.7	82.3	82.7	
Train Individually on Flan-T5-base	30.5	45.1	64.5	82.0	83.0	
UniMath-T5-base	37.3	49.6	65.4	83.3	82.9	
UniMath-Flan-T5-base	41.8	50.0	66.5	82.7	83.0	

Takeaways

- Process diverse math modalities separately
- Joint training yields better performance

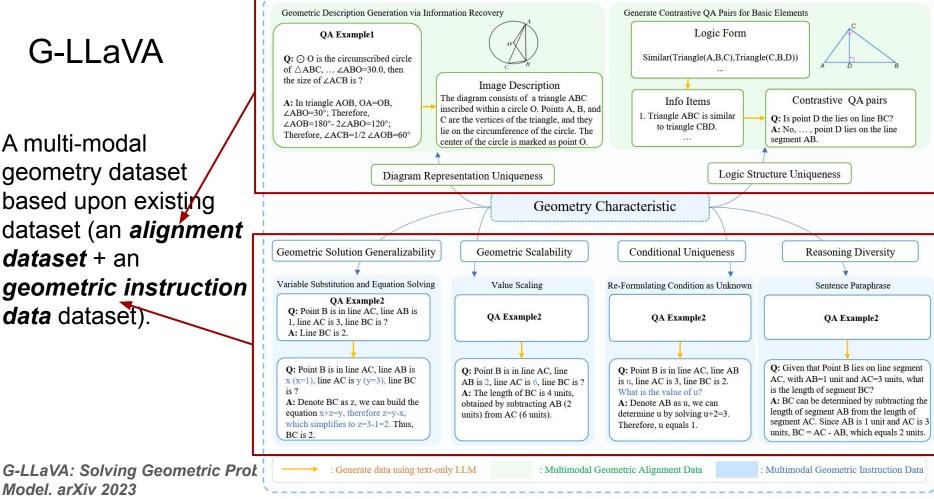
Agenda

- UniMath: A Foundational and Multimodal Mathematical Reasoner
- G-LLaVA: Solving Geometric Problem with Multi-Modal Large Language Model
- Math-LLaVA: Bootstrapping Mathematical Reasoning for Multimodal Large Language Models

G-LLaVA: Solving Geometric Problem with Multi-Modal Large Language Model. arXiv 2023

Two-stage finetuning:

• Cross-modal alignment


To mitigate the hallucinations of VLMs on understanding geometric figures

• Instruction-following tuning

Enhance the capabilities of VLMs on addressing geometric math problems

A multi-modal geometry dataset based upon existing dataset (an alignment dataset + an geometric instruction data dataset).

Model, arXiv 2023

Alignment dataset:

Geometric Image Caption Generation: use *text-only ChatGPT 3.5* to create image captions based on these *human-labeled QA pairs*, which can be considered as a type of inverse *information recovery*.

Geometric Description Generation via Information Recovery

QA Pair:

Question: As shown in the figure, circle O is the circumscribed circle of triangle ABC, and it is known that angle ABO = 30.0, then the size of angle ACB is () Answer: In triangle AOB, OA=OB, angle ABO= 30° ; Therefore, angle AOB= 180° - 2 angle ABO = 120° ; Therefore, angle ACB=1/2angle AOB= 60°

Diagram Description:

The diagram consists of a triangle ABC inscribed within a circle, where the circle is denoted as circle O. Points A, B, and C are the vertices of the triangle, and they all lie on the circumference of the circle. The center of the circle is marked as point O.

G-LLaVA: Solving Geometric Problem with Multi-Modal Large Language Model. arXiv 2023

Alignment dataset:

• Contrastive QA Pairs:

1. Use text-only ChatGPT to convert *logical forms into clear descriptions*.

2. Produce *contrastive QA pairs*

G-LLaVA: Solving Geometric Problem wit Model. arXiv 2023

Contrastive QA Pairs for Basic Elements

Logic Form: Similar(Triangle(A,B,C),Triangle(C,B,D)) Triangle(A,B,C) Triangle(A,C,B) Equals(LengthOf(Line(C, B)), 5) Equals(LengthOf(Line(C, D)), 3) Equals(LengthOf(Line(B, D)), 4) PointLiesOnLine(D, Line(A, B))

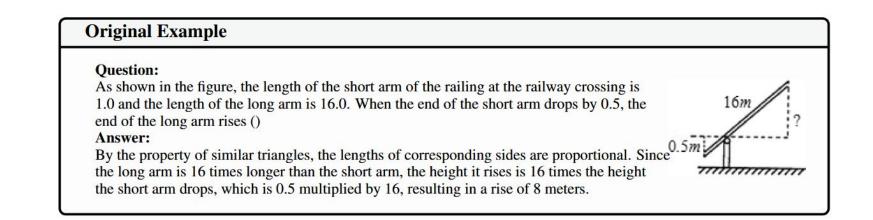
Perpendicular(Line(A, C), Line(C, B))
Perpendicular(Line(C, D), Line(A, D))

Phase-1 Generation

Info Items:

The geometric figure have the following information: Info 1: The figure represents a triangle with vertices A, B, and C. Info 2: Triangle ABC is similar to triangle CBD. Info 3: Point D lies on the line segment AB. Info 4: Line segment AC is perpendicular to line segment CB.

Summary:


The figure depicts a triangle ABC and triangle CBD, which is similar to triangle ABC. Additionally, triangle ACB is also present in the figure. The lengths of the segments CB, CD, and BD are 5, 3, and 4 units respectively. Point D lies on the line segment AB, and perpendicularity is indicated between the line segments AC and CB, as well as between the line segments CD and AD.

Phase-2 Generation

QA pairs:

Question: Does the diagram include a triangle formed by vertices A, B, and D?
 Answer: No, the diagram does not include a triangle formed by vertices A, B, and D. The triangles present are ABC and CBD, and the point D lies on the line segment AB.
 Question: Does the diagram contain a triangle with vertices A, C, and B?
 Answer: Yes, the diagram contains triangle ACB, which is the same as triangle ABC.
 Question: Is point D the lies on line BC?
 Answer: No, point D is not on lines BC. The point D lies on the line segment AB.
 Question: Is line segment AC perpendicular to line segment CB?
 Answer: Yes, line segment AC is perpendicular to line segment CB.

Geometric Instruction Data: construct an instruction tuning dataset based on existing datasets with the help of powerful LLMs.


Geometric Instruction Data:

• Equation Solving (ES):

Replace the *specific values* in the original QA pairs with *unknown variables* and prompt the LLM to construct the solution by *solving equation* Variable Substitution and Equation Solving

Question:

Given a railway crossing barrier with two arms, where the shorter arm has a length of 'a' units (a = 1.0) and the longer arm has a length of 'b' units (b = 16.0), determine the elevation 'y' units of the longer arm's end when the shorter arm descends by 'd' units (d = 0.5). Express your answer as a function of 'a', 'b', and 'd'.

Answer:

To find the elevation 'y' of the long arm's end, we apply the property of similar triangles and establish the equation $\frac{d}{y} = \frac{a}{b}$. Substituting the given values, we get $\frac{0.5}{y} = \frac{1.0}{16.0}$. Solving for 'y' leads to $y = \frac{b \times d}{a}$, which simplifies to $y = \frac{16.0 \times 0.5}{1.0}$. Therefore, 'y' equals 8.0 units, indicating that the long arm rises by 8.0 units when the short arm descends by 0.5 units.

Question:

In a railway crossing lever system, the lengths of the shorter and longer arms are 's' units (s = 1.0) and 'l' units (l = 16.0) respectively. If the shorter arm lowers by 'deltaS' units (deltaS = 0.5), what is the increase 'deltaL' in the length of the longer arm?

Answer:

The increase 'deltaL' in the longer arm can be found using the proportionality relationship of similar triangles. The equation can be expressed as: $\frac{deltaS}{deltaL} = \frac{s}{l}$. Inserting the given values, the equation becomes $\frac{0.5}{deltaL} = \frac{1.0}{16.0}$. Solving for 'deltaL' yields $deltaL = \frac{l \times deltaS}{s}$, which simplifies to $deltaL = \frac{16.0 \times 0.5}{1.0}$. Thus, deltaL is 8.0 units.

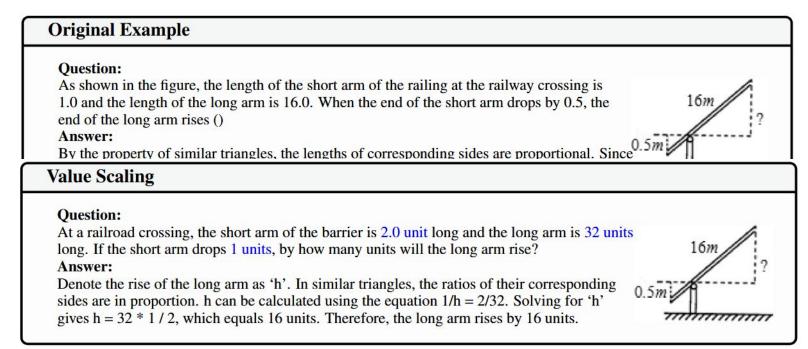
Question:

Generalize its understanding of the problem

Answer:

he barrier is 1.0 unit long and the long arm is 16.0 units long. If the short will the long arm rise?

G-LLaVA: Solving Geometric Problem will Model. arXiv 2023

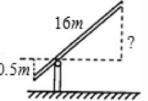

The triangles formed by the shorter and longer arms as they descend are similar. The rise of the long arm 'h' can be calculated using the property of similar triangles, the equation is 0.5/h = 1/16. Solving for 'h' gives h = 16 * 0.5 / 1, which equals 8.0 units.

G-LLaVA: Solving Geometric Problem with Multi-Modal Large Language Model. arXiv 2023

G-LLaVA

Geometric Instruction Data: Flexible in handling different numerical inputs

• Value Scaling (VS): augment the data by scaling the length values in the QA pairs



Geometric Instruction Data: Flexible in handling different numerical inputs

Re-Formulating Condition as Unknown (RCU): reformulate questions to ask for the values originally present in the condition, and retain the generated data with correct answer only

Re-Formulating Condition as Unknown (Weng et al., 2023; Yu et al., 2023) Ouestion: At a railroad crossing, the short arm of the barrier is u unit long and the long arm is 16.0 units long. When the end of the short arm drops by 0.5, the end of the long arm rises 8 units. What is the value of unknown variable u? Answer:

Denote the short arm of the barrier as variable u. By the property of similar triangles, we can determine u by solving the equation 0.5/8 = u/16. Therefore, u equals 1.

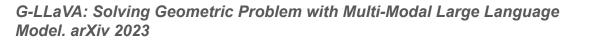
G-LLaVA: Solving Geometric Problem with Multi-Modal Large Language Model. arXiv 2023

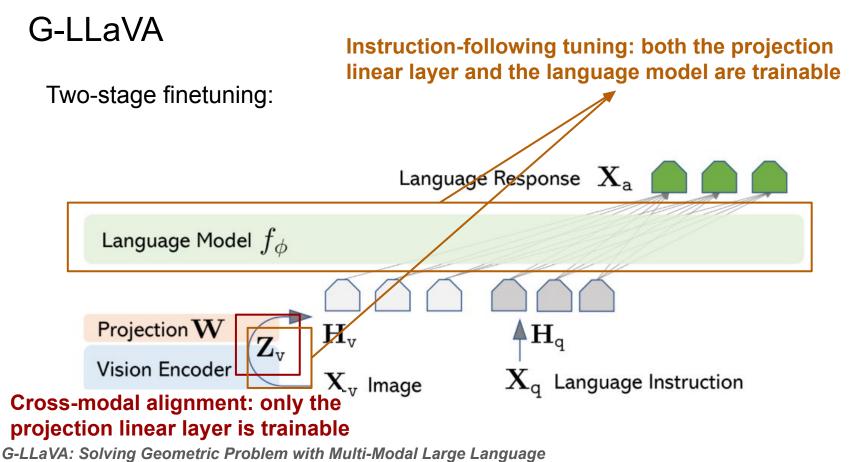
Geometric Instruction Data: Handle similar questions with different phrasings and provide accurate responses

• Sentence Paraphrase (SP): paraphrasing for both the question and answer pairs

16n

11111111111111


Sentence Paraphrase


Question:

In the illustration, the railing at the railway crossing has a short arm measuring 1.0 unit in length and a long arm measuring 16.0 units. When the short arm drops by 0.5 units, what is the corresponding rise in the long arm?

Answer:

The triangles are similar, and their corresponding sides are proportional. The long arm is 16 times longer than the short arm, resulting in an 8-meter rise when the short arm drops by 0.5 meters.

Model. arXiv 2023

G-LLaVA							
	Model	Input	Accuracy (%)				
	Heuristics	Baseline		Multimodal LLMs			
	Random Chance	10-	21.6	Multimodal Bard	Q, I	47.1	
Data Gen:	Frequent Guess	-	34.1	Gemini Nano 1	Q,I	21.6	
	Human	Q, I	48.4	Gemini Nano 2	Q, I	23.6	
	Class Same	M - 1-1		Gemini Pro	Q, I	40.4	
GeoQA+ and	Close Source Model			Gemini Ultra	Q, I	56.3	
Geometry3K	Text-Only LLMs		20.9	GPT4-V	Q, I	50.5	
-	2-shot CoT Claude-2	Q	29.8	Open Sourc	ree Model		
	2-shot CoT ChatGPT	Q	36.5	and a second		21.1	
	2-shot CoT GPT-4	Q	44.7	IDEFICS (9B-Instruct)	Q, I		
Testing:	2-shot PoT ChatGPT	Q	30.8	mPLUG-Owl (LLaMA-7B)	Q, I	23.6	
resting.	2-shot PoT GPT-4	Q	33.2	miniGPT4 (LLaMA-2-7B)	Q, I	26.0	
	Visual-Augmented LLMs			LLaMA-Adapter-V2 (7B)	Q, I	25.5	
MathVista	2-shot CoT Claude-2	Q, I_c, I_t	31.7	LLaVAR	Q, I	25.0	
	2-shot CoT ChatGPT	Q, I_c, I_t	29.3	InstructBLIP (Vicuna-7B)	Q, I	20.7	
	2-shot CoT GPT-4	Q, I_c, I_t	31.7	LLaVA (LLaMA-2-13B)	Q,I	29.3	
	2-shot PoT ChatGPT	Q, I_c, I_t	26.4	G-LLaVA-7B	Q, I	53.4	
	2-shot PoT GPT-4	Q, I_c, I_t	39.4	G-LLaVA-13B	Q, I	56.7	

G-LLaVA: Solving Geometric Problem with Multi-Modal Large Language Model. arXiv 2023

Takeaways

- Two-stage finetuning pipeline: alignment + instruction-following
- Two-phase data augmentation pipeline

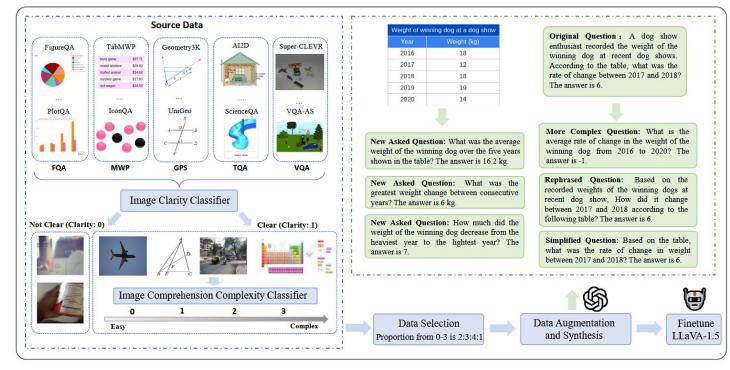
• Potential future work:

Using preference optimization or contrastive learning during the first finetuning stage for aligning the VLMs

Agenda

- UniMath: A Foundational and Multimodal Mathematical Reasoner
- G-LLaVA: Solving Geometric Problem with Multi-Modal Large Language
 Model
- Math-LLaVA: Bootstrapping Mathematical Reasoning for Multimodal Large Language Models

Math-LLaVA


Existing open-source image instruction fine-tuning datasets, containing limited question-answer pairs per image, do not fully exploit *visual information* to enhance the multimodal mathematical reasoning capabilities of VLMs

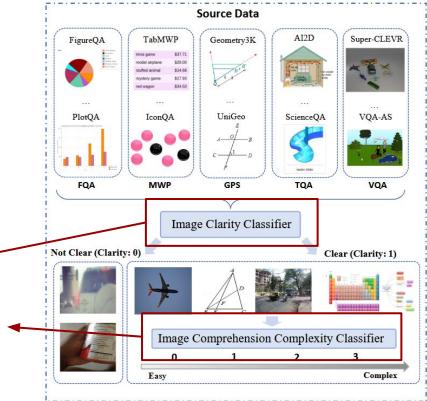
Contribution:

- Collecting 40K high-quality images from 24 existing datasets and synthesizing 320K new pairs, creating the MathV360K dataset
- Fine-tuning LLaVA-1.5 with MathV360K, we developed Math-LLaVA

Math-LLaVA: Bootstrapping Mathematical Reasoning for Multimodal Large Language Models. EMNLP 2024

- Collecting Data
- Data Augmentation
- Finetuning

Collecting Data


24 visual question answering and multimodal mathematica reasoning datasets

	Dataset	Teck	Visual Contact	Tuaining Imagas	Clean Images	Im	age Cor	nplexit	ty
	Dataset	Task	visual Context	Training Images	Clear Images	0	1	2	3
	DocVQA (2022)	FQA	Document Image	8535	8227	2086	6007	125	9
Math-LLaVA	FigureQA (2017)	FQA	Charts and Plots	18173	18173	687	16792	694	0
	DVQA (2018)	FQA	Bar Chart	19092	19092	21	18021	1045	5
	PlotQA (2020)	FQA	Bar, Line, Scatter	18782	18782	13	18759	10	0
	ChartQA (2022)	FQA	Charts and Plots	3699	3699	0	3649	50	0
Collecting Data	MapQA (2022)	FQA	Map Chart	10020	10016	1	10015	0	0
Collecting Data	IconQA (2021b)	MWP	Abstract Scene	20000	19068	10991	8055	22	0
	CLEVR-Math (2022)	MWP	Synthetic Scene	17552	17551	1	17550	0	0
24 visual question answering	TabMWP (2022b)	MWP	Table	20000	20000	14919	5081	0	0
and multimodal mathematical	GEOS (2015)	GPS	Geometry Diagram	66	64	2	57	5	0
reasoning datasets	Geometry3K (2021a)	GPS	Geometry Diagram	2101	2101	21	1508	568	4
reasoning datasets	GeoQA+ (2022)	GPS	Geometry Diagram	6027	5956	103	4399	1454	0
	UniGeo (2022)	Task Visual Context Training Images Clear Images 0 1 22.) FQA Document Image 8535 8227 2086 6007 117) FQA Charts and Plots 18173 18173 687 16792 8) FQA Bar Chart 19092 19092 21 18021 00 FQA Bar, Line, Scatter 18782 18782 13 18759 22.) FQA Charts and Plots 3699 3699 0 3649 22.) FQA Map Chart 10020 10016 1 10015 1b) MWP Abstract Scene 20000 19068 10991 8055 2022) MWP Table 20000 20000 14919 5081 50 GPS Geometry Diagram 66 64 2 57 021a) GPS Geometry Diagram 6027 5956 103 4399 22) GPS <td< td=""><td>846</td><td>0</td></td<>	846	0					
	TQA (2017)	TQA	Scientific Figure	1499	1497	20	949	498	30
	AI2D (2016)	TQA	Scientific Figure	3247	3235	32	2321	823	59
	ScienceQA (2022a)	TQA	Scientific Figure	6218	6061	1533	4251	273	4
	A-OKVQA (2022)	VQA	Natural Image	16540	14526	10	11724	2743	49
	VQA2.0 (2017)	VQA	Natural Image	16912	14521	45	12783	1672	21
	PMC-VQA (2023a)	VQA	Medical Image	19682	9846	62	2989	3501	3294
	VizWiz (2018)	VQA	Natural Image	20,000	16400	790	14800	770	40
	Super-CLEVR (2023)	VQA	Synthetic Scene	2000	1950	1	1568	381	0
Math I LaVA: Postatrapping Mathematic	VQA-AS (2015)	VQA	Abstract Scene	14065	14065	7	13996	62	0
Math-LLaVA: Bootstrapping Mathematic Language Models. EMNLP 2024	VQA-RAD (2018)	VQA	Medical Image	259	248	0	91	95	62
Language mousis. LIMALE 2024	TextVQA (2019)	VQA	Natural Image	15815	11350	179	9497	1598	76

Collecting Data

- Image Filtering and Proportioning based on:
 - clarity of the images
 - comprehension complexity

Obtained 40K high-quality (I, Q, A) real data points that are diverse in image information and questions are progressive in difficulty

Collecting Data

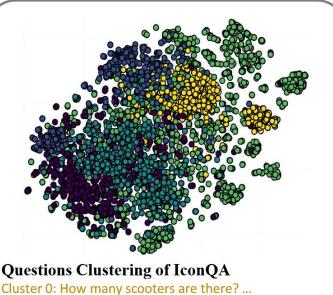
- Image Filtering and Proportioning based on:
 - clarity of the images
 - comprehension complexity

Training two ViTs using data annotated by GPT4V

PlotOA IconOA UniGeo ScienceOA VOA-AS FQA MWP GPS TQA VQA Image Clarity Classifier Not Clear (Clarity: 0) Clear (Clarity: 1) Image Comprehension Complexity Classifier Complex Easy

AI2D

Super-CLEVR


Data Augmentation

Clustering:

Math-LLaVA Term Frequency-Inverse Document Frequency (TF-IDF): a numerical statistic often used in information retrieval and text mining to assess how important a word is to a document within a collection of documents

- using *TF-IDF* to extract features of *text* Ο questions
- clustered using *K-Means* into FQA, Ο GPS, MWP, TQA, VQA

To construct few-shot examples for generating new questions

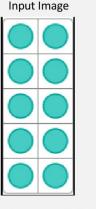
Cluster 1: Move the ruler to measure the length of the nail to the nearest inch. The nail is about () inches long....

Cluster 2: The first picture is a paw. Which picture is eighth? ...

Cluster 3: If you select a marble without looking, which color are you more likely to pick? ...

Cluster 4: Rick is waking up in the morning. The clock by his bed shows the time. What time is it? ...

Data Augmentation


• Generate additional questions:

Using *few-shot prompting* to generate *5 new questions* based on the original images and questions

To fully exploit visual information of an image

Prompt-Ask New Questions:

[ROLE] You are an expert at understanding images and good at asking and answering questions based on the given images.

Q: How many dots are there?

[TASK] You will be given some question examples. Please refer to the format of the examples to ask up to five high-quality questions on the given image. The original question of the image will also be given, please avoid asking the same question. Please provide the correct answer within ten words or answer with only an integer or float number.

[EXAMPLES]

From IconQA:

Question: There is 1 ball in the top row. How many balls are in the bottom row? Question: What has been done to this letter? ...

From CLEVR-Math: ...

From TabMWP: ...

[ORIGINAL QUESTION] {Q}

[REQUIREMENT] Please follow and make full use of the image information. Please avoid asking questions for which you are not confident to give the definite correct answer. Please do not completely copy the content of the example questions. Ensure that provide final correct answer for each question.

[OUTPUT FORMAT] Your output MUST be "The question is [YOUR QUESTION]. The answer is [YOUR CORRECT ANSWER]."

Obtained 8 x 40K = 320K synthetic data

Data Augmentation

- Augmentation of original question:
 - more complex questions based on the original image and corresponding inquiries
 - ask the same question in different ways without changing the answer
 - simplified the original questions without affecting their semantic understanding

Prompt-Complexity:

You will be given the question for the given image. Please ask a more complex question that requires more steps to answer than the given question. Question: {Q}

Prompt-Logical Consistency:

You are an AI assistant to help me rephrase questions. Please ask the same question in a different way but have to make sure the answer won't be changed. Question: {Q}

Rephrase the above question:

Prompt-Underspecification:

You are an AI assistant to help me rephrase question of the given image. Please simplify the question into a concise question, but does not affect the understanding and answering question with the image. Question: {Q} Simplify the above question:

	Model	MathVista												
			FQA	GPS	MWP	TQA	VQA	ALG	ARI	GEO	LOG	NUM	SCI	STA
	Heuristics Baselines													
Math-LLaVA	Random Chance	17.9	18.2	21.6	3.8	19.6	26.3	21.7	14.7	20.1	13.5	8.3	17.2	16.3
	Frequent Guess (Lu et al., 2023)		22.7	34.1	20.4	31.0	24.6	33.1	18.7	31.4	24.3	19.4	32.0	20.9
	Human		<mark>59.7</mark>	48.4	73.0	63.2	55.9	<u>50.9</u>	59.2	51.4	40.7	53.8	64.9	63.9
Finetune LLaVA-v1.5-13B	Close-Source Multimodal Large Langugae Models (MLLMs)													
on MathV360K (SFT)	Gemini 1.0 Nano 2 (Team et al., 2023)		28.6	23.6	30.6	41.8	31.8	27.1	29.8	26.8	10.8	20.8	40.2	33.5
	Qwen-VL-Plus (Bai et al., 2023)	43.3	54.6	38.5	31.2	55.1	34.1	39.1	32.0	39.3	18.9	26.4	59.0	56.1
Test on Math/ista	Gemini 1.0 Pro (Team et al., 2023)	45.2	47.6	40.4	39.2	61.4	39.1	45.2	38.8	41.0	10.8	32.6	54.9	56.8
Test on MathVista	Claude 3 Haiku (Anthropic, 2024)	46.4	-	-	-	-	-	-	-	-	-	-	-	-
	GPT-4V (OpenAI)		43.1	50.5	57.5	65.2	38.0	53.0	49.0	51.0	21.6	20.1	63.1	55.8
ALG: algebraic reasoning ARI: arithmetic reasoning	Open-Source Multimodal Large Langugae Models (MLLMs)													
	mPLUG-Owl-7B (Ye et al., 2023)	22.2	22.7	23.6	10.2	27.2	27.9	23.6	19.2	23.9	13.5	12.7	26.3	21.4
	miniGPT4-7B (Zhu et al., 2023)	23.1	18.6	26.0	13.4	30.4	30.2	28.1	21.0	24.7	16.2	16.7	25.4	17.9
	LLaVAR-13B (Zhang et al., 2023b)	25.2	21.9	25.0	16.7	34.8	30.7	24.2	22.1	23.0	13.5	15.3	42.6	21.9
	InstructBLIP-7B (Dai et al., 2024)	25.3	23.1	20.7	18.3	32.3	35.2	21.8	27.1	20.7	18.9	20.4	33.0	23.1
GEO: geometry reasoning	LLaVA-13B (Liu et al., 2023)	26.1	26.8	29.3	16.1	32.3	26.3	27.3	20.1	28.8	24.3	18.3	37.3	25.1
LOG:logical reasoning	SPHINX-V1-13B (Lin et al., 2023b)	27.5	23.4	23.1	21.5	39.9	34.1	25.6	28.1	23.4	16.2	17.4	40.2	23.6
NUM: numeric commonsense	LLaVA-1.5-13B (Liu et al., 2024)	27.6	-	-	17	-	-	-	-	-	-	-	-	-
SCI: scientific reasoning STA: statistical reasoning	LLaVA-1.5-13B [†] (Liu et al., 2024)	27.7	23.8	22.7	18.3	40.5	30.2	25.3	26.4	22.8	21.6	26.4	35.3	23.6
	OmniLMM-12B (OpenBMB, 2024)	34.9	45.0	17.8	26.9	44.9	39.1	23.1	32.3	20.9	18.9	27.8	45.9	44.2
	SPHINX-V2-13B (Lin et al., 2023b)	36.7	54.6	16.4	23.1	41.8	43.0	20.6	33.4	17.6	24.3	21.5	43.4	51.5
	G-LLaVA-13B (Gao et al., 2023a)	-	-	<u>56.7</u>	-	-	-	÷	-	-	-	-	-	-
	Math-LLaVA-DS	38.2	33.5	47.2	41.4	36.7	34.6	38.4	34.3	45.6	18.9	33.3	45.9	35.2
UniMath: A Foundational and Mu	Math-LLaVA	46.6	37.2	57.7	56.5	51.3	33.5	53	40.2	56.5	16.2	33.3	49.2	43.9

	Model		MathVista												
			ALL	FQA	GPS	MWP	TQA	VQA	ALG	ARI	GEO	LOG	NUM	SCI	STA
Math-LLaVA	imp ^{Frequ} ، 2. ach	ieves 46. rovemen ieves 57.	t coi 7% a	mpa	r <mark>e w</mark> i	ith va	anilla	ı LLa	VA			minç	3	0	16.3 20.9 63.9
Finetune LLaVA-v1.5-13B		LaVA-13E		rahl	<u> </u>				ОПТ						
on MathV360K (SFT)		ieving co	-		e pe		nanc	eio							33.5
	Qwen-vL-Plus (Bai el		43.3		38.5	31.2	55.1	34.1		32.0		18.9		59.0	
Test on MathVista	Gemini 1.0 Pro (Team et al., 2023)		45.2 46.4	47.6	40.4	39.2	61.4	39.1	45.2	38.8	41.0	10.8	32.6	54.9	56.8
	Claude 3 Haiku (Anthropic, 2024)			-	-	-	-	-	-	-	-	-	-	-	-
	GPT-4V (OpenAI) 49.9 43.1 50.5 57.5 65.2 38.0 53.0 49.0 51.0 21.6 20.1 63.1 55.8 Open-Source Multimodal Large Langugae Models (MLLMs)														
					-										
	mPLUG-Owl-7B (Ye et al., 2023)		22.2	22.7	23.6	10.2	27.2	27.9		19.2		13.5	12.7		21.4
	miniGPT4-7B (Zhu et al., 2023)		23.1	18.6	26.0	13.4	30.4	30.2	28.1	21.0	24.7	16.2	16.7	25.4	17.9
ALG: algebraic reasoning	LLaVAR-13B (Zhang et al., 2023b)		25.2	21.9	25.0	16.7	34.8	30.7	24.2	22.1	23.0	13.5	15.3	42.6	21.9
ARI: arithmetic reasoning	InstructBLIP-7B (Dai et al., 2024)		25.3	23.1	20.7	18.3	32.3	35.2	21.8	27.1	20.7	18.9	20.4	33.0	23.1
GEO: geometry reasoning	LLaVA-13B (Liu et al., 2023)		26.1	26.8	29.3	16.1	32.3	26.3	27.3	20.1	28.8	24.3	1 <mark>8.3</mark>	37.3	25.1
LOG:logical reasoning	SPHINX-V1-13B (Lin et al., 2023b)		27.5	23.4	23.1	21.5	39.9	34.1	25.6	28.1	23.4	16.2	17.4	40.2	23.6
NUM: numeric commonsense	LLaVA-1.5-13B (Liu et al., 2024)		27.6	-	-	-	-	-	-	-	-	-	-	-	-
SCI: scientific reasoning STA: statistical reasoning	LLaVA-1.5-13B [†] (Liu et al., 2024)			23.8	22.7	18.3	40.5	30.2	25.3	26.4	22.8	21.6	26.4	35.3	23.6
	OmniLMM-12B (OpenBMB, 2024)		34.9	45.0	17.8	26.9	44.9	39.1	23.1	32.3	20.9	18.9	27.8	45.9	44.2
	SPHINX-V2-13B (Lin et al., 2023b)			54.6	16.4	23.1	41.8	43.0	20.6	33.4	17.6	24.3	21.5	43.4	51.5
	G-LLaVA-13B (Gao et al., 2023a)			_	56.7	_	_	-	<u> </u>	-	-	_	-	_	-
	Math-LLaVA-	OS	38.2	33.5	47.2	41.4	36.7	34.6	38.4	34.3	45.6	18.9	33.3	45.9	35.2
UniMath: A Foundational and M	Math-LLaV	4	46.6	37.2	57.7	56.5	51.3	33.5	53	40.2	56.5	16.2	33.3	49.2	43.9

Math-LLaVA massive multi-discipline tasks demanding college-level subject knowledge and deliberate reasoning

Evaluation experiments using the MMMU benchmark (generalization capability) sub-domains

Model	MMMU	Art & Design	Business	Sci.	Health & Med.	Human. & Social Sci.	Tech. & Eng.
Random Chance	22.1	29.2	24.7	18.0	20.7	20.0	21.4
Frequent Guess	26.8	23.3	29.3	27.3	30.0	25.8	24.8
miniGPT4-7B	26.8	29.2	21.3	28.7	30.7	29.2	23.8
mPLUG-Owl-7B	32.7	45.8	24.7	22.7	32.0	45.8	31.0
SPHINX-13B	32.9	48.3	24.7	26.7	30.7	50.0	26.2
InstructBLIP-7B	32.9	40.0	28.0	32.7	28.7	47.5	27.1
LLaVA-1.5-13B	36.4	51.7	22.7	29.3	38.7	53.3	31.4
Math-LLaVA-DS	36.9	55.0	24.7	23.3	38.7	56.7	32.4
Math-LLaVA	38.3	53.3	24.7	30.7	38.7	58.3	33.3

significantly outperforms the base model, LLaVA-1.513B, as well as several other open-source MLLMs on all six

UniMath: A Foundational and Multimodal Mathematical Reasoner. EMNLP 2023

Data is all you need !

Questions

(1) Paper: UniMath: A Foundational and Multimodal Mathematical Reasoner

Question: This paper did tests on three different tasks, mainly (symbol pre-processing, image tokenization and COT). could these three tasks be done at once to gain better results ?

(2) Paper: UniMath: A Foundational and Multimodal Mathematical Reasoner

Question: In table 1, section 3.4: What do you think why prompt-based LLMs were excluded during model comparison? It seems the paper did not justify the reason.

(3) Paper: UniMath: A Foundational and Multimodal Mathematical Reasoner

Question: Considering the breakthrough of recent DeepSeek-R1, why multi-modality is so important in these math reasoning papers except the geometry problems?

Thank you